Numerical Algorithms

, Volume 50, Issue 1, pp 1–16

Two modified Dai-Yuan nonlinear conjugate gradient methods

Original Paper

Abstract

In this paper, we propose two modified versions of the Dai-Yuan (DY) nonlinear conjugate gradient method. One is based on the MBFGS method (Li and Fukushima, J Comput Appl Math 129:15–35, 2001) and inherits all nice properties of the DY method. Moreover, this method converges globally for nonconvex functions even if the standard Armijo line search is used. The other is based on the ideas of Wei et al. (Appl Math Comput 183:1341–1350, 2006), Zhang et al. (Numer Math 104:561–572, 2006) and possesses good performance of the Hestenes-Stiefel method. Numerical results are also reported.

Keywords

Conjugate gradient method Global convergence 

Mathematics Subject Classifications (2000)

90C30 65K05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrei, N.: A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization. Appl. Math. Lett. 21, 165–171 (2008)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bongartz, K.E., Conn, A.R., Gould, N.I.M., Toint, P.L.: CUTE: constrained and unconstrained testing environments. ACM Trans. Math. Softw. 21, 123–160 (1995)MATHCrossRefGoogle Scholar
  3. 3.
    Byrd, R., Nocedal, J.: A tool for analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26, 727–739 (1989)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dai, Y.H.: New properties of a nonlinear conjugate gradient method. Numer. Math. 89, 83–98 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dai, Y.H.: A nonmonotone conjugate gradient algorithm for unconstrained optimization. J. Syst. Sci. Complex. 15, 139–145 (2002)MATHMathSciNetGoogle Scholar
  6. 6.
    Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182 (1999)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dai, Y.H., Yuan, Y.: An efficient hybrid conjugate gradient method for unconstrained optimization. Ann. Oper. Res. 103, 33–47 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dai, Y.H., Yuan, Y.: Nonlinear Conjugate Gradient Methods. Shanghai Science and Technology, Shanghai (2000)Google Scholar
  9. 9.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM. J. Optim. 2, 21–42 (1992)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58 (2006)MATHGoogle Scholar
  14. 14.
    Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. B 49, 409–432 (1952)MATHMathSciNetGoogle Scholar
  15. 15.
    Li, D.H., Fukushima, M.: A modified BFGS method and its global convergence in nonconvex minimization. J. Comput. Appl. Math. 129, 15–35 (2001)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Moré, J.J., Thuente, D.J.: Line search algorithms with guaranted sufficient decrease. ACM Trans. Math. Softw. 20, 286–307 (1994)MATHCrossRefGoogle Scholar
  17. 17.
    Polak, B., Ribiere, G.: Note surla convergence des méthodes de directions conjuguées. Rev. Francaise Imformat Recherche Opertionelle 16, 35–43 (1969)MathSciNetGoogle Scholar
  18. 18.
    Polyak, B.T.: The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9, 94–112 (1969)CrossRefGoogle Scholar
  19. 19.
    Wei, Z., Yao, S., Liu, L.: The convergence properties of some new conjugate gradient methods. Appl. Math. Comput. 183, 1341–1350 (2006)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zhang, L., Zhou, W., Li, D.: Global convergence of the DY conjugate gradient method with Armijo line search for unconstrained optimization problems. Optim. Methods Softw. 22, 511–517 (2007)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhang, L., Zhou, W., Li, D.: A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Zhang, L., Zhou, W., Li, D.: Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search. Numer. Math. 104, 561–572 (2006)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Zhang, L., Zhou, W., Li, D.: Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw. 22, 697–711 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.College of Mathematics and Computational ScienceChangsha University of Science and TechnologyChangshaChina

Personalised recommendations