Numerical Algorithms

, Volume 49, Issue 1–4, pp 387–407 | Cite as

Interlacing of the zeros of contiguous hypergeometric functions

Original Paper

Abstract

It is well-known that hypergeometric functions satisfy first order difference-differential equations (DDEs) with rational coefficients, relating the first derivative of hypergeometric functions with functions of contiguous parameters (with parameters differing by integer numbers). However, maybe it is not so well known that the continuity of the coefficients of these DDEs implies that the real zeros of such contiguous functions are interlaced. Using this property, we explore interlacing properties of hypergeometric and confluent hypergeometric functions (Bessel functions and Hermite, Laguerre and Jacobi polynomials as particular cases).

Keywords

Hypergeometric functions First order DDEs Zeros Interlacing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions (Bateman Manuscript Project). McGraw-Hill, New York (1953)Google Scholar
  2. 2.
    Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs and mathematical tables. Nat. Bur. Standards Appl. Series, vol. 55. U.S. Government Printing Office, Washington, D.C. (1964) (paperback edition published by Dover, New York)Google Scholar
  3. 3.
    Deaño, A., Gil, A., Segura, J.: New inequalities from classical Sturm theorems. J. Approx. Theory 131, 208–230 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gil, A., Koepf, W., Segura, J.: Computing the real zeros of hypergeometric functions. Numer. Algorithms 36, 113–134 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)MATHGoogle Scholar
  6. 6.
    Segura, J.: The zeros of special functions from a fixed point method. SIAM J. Numer. Anal. 40, 114–133 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gil, A., Segura, J.: Computing the zeros and turning points of solutions of second order homogeneous linear ODEs. SIAM J. Numer. Anal. 41(3), 827–855 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Segura, J.: On the zeros and turning points of special functions. J. Comput. Appl. Math. 153, 433–440 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Driver, K., Jordaan, K.: Separation theorems for the zeros of certain hypergeometric polynomials. J. Comput. Appl. Math. 199(1), 48–55 (2007)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Driver, K., Jordaan, K.: Interlacing of zeros of shifted sequences of one-parameter orthogonal polynomials. Numer. Math. 107, 615–624 (2007)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Driver, K., Jordaan, K., Mbuyi, N.: Interlacing of the zeros of Jacobi polynomials with different parameters. Numer. Algorithms (this same issue) doi:10.1007/s11075-008-9162-2
  12. 12.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1944)MATHGoogle Scholar
  13. 13.
    Vidūnas, R.: Contiguous relations of hypergeometric series. J. Comput. Appl. Math. 153, 507–519 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Koepf, W.: Hypergeometric summation. An Algorithmic Approach to Summation and Special Function Identities. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig (1998)Google Scholar
  15. 15.
    Elbert, Á., Laforgia, A.: On the square of the zeros of Bessel functions. SIAM J. Math. Anal. 15, 206–212 (1984)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Departamento de Matemáticas, Estadística y ComputaciónUniversidad de CantabriaSantanderSpain

Personalised recommendations