Numerical Algorithms

, Volume 47, Issue 4, pp 341–359 | Cite as

Block Krylov–Schur method for large symmetric eigenvalue problems

Original Paper

Abstract

Stewart’s Krylov–Schur algorithm offers two advantages over Sorensen’s implicitly restarted Arnoldi (IRA) algorithm. The first is ease of deflation of converged Ritz vectors, the second is the avoidance of the potential forward instability of the QR algorithm. In this paper we develop a block version of the Krylov–Schur algorithm for symmetric eigenproblems. Details of this block algorithm are discussed, including how to handle rank deficient cases and how to use varying block sizes. Numerical results on the efficiency of the block Krylov–Schur method are reported.

Keywords

Block method Krylov–Schur Lanczos Implicit restart 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baglama, J., Calvetti, D., Reichel, L.: IRBL: an implicitly restarted block-lanczos method for large-scale Hermitian eigenproblems. SIAM J. Sci. Comput. 24, 1650–1677 (2003)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Baglama, J., Calvetti, D., Reichel, L.: Irbleigs: a MATLAB program for computing a few eigenpairs of a large sparse Hermitian matrix. ACM Trans. Math. Software 5, 337–348 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bai, Z., Day, D., Ye, Q.: ABLE: an adaptive block Lanczos method for non-Hermitian eigenvalue problems. SIAM J. Matrix Anal. Appl. 20, 1060–1082 (1999)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Bischof, C.H., Quintana-Ortí, G.: Computing rank-revealing QR factorizations of dense matrices. ACM Trans. Math. Software 24, 226–253 (1998)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Chelikowsky, J.R., Troullier, N., Saad, Y.: Finite-difference-pseudopotential method: electronic structure calculations without a basis. Phys. Rev. Lett. 72, 1240–1243 (1994)CrossRefGoogle Scholar
  6. 6.
    Dai, H., Lancaster, P.: Preconditioning block Lanczos algorithm for solving symmetric eigenvalue problems. J. Comput. Math. 18(4), 365–374 (2000)MathSciNetMATHGoogle Scholar
  7. 7.
    Daniel, J., Gragg, W.B., Kaufman, L., Stewart, G.W.: Reorthogonalization and stable algorithms for updating the Gram–Schmidt QR factorization. Math. Comp. 30, 772–795 (1976)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Freund, R.W.: Band Lanczos method. In: Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.), Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, pp. 80–88. SIAM, Philadelphia (2000)Google Scholar
  9. 9.
    Golub, G.H., Luk, F.T., Overton, M.L.: A block Lanczos method for computing the singular values and corresponding singular vectors of a matrix. ACM Trans. Math. Software 7, 149–169 (1981)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Grimes, R.G., Lewis, J.G., Simon, H.D.: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl. 15, 228–272 (1994)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Knyazev, A.V., Neymeyr, K.: Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method. ETNA 15, 38–55 (2003)MathSciNetMATHGoogle Scholar
  13. 13.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kronik, L., Makmal, A., Tiago, M., Alemany, M., Jain, M., Huang, X., Saad, Y., Chelikowsky, J.: PARSEC—the pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nano-structures. Phys. Status Solidi B 243, 1063–1079 (2006)CrossRefGoogle Scholar
  15. 15.
    Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards 45, 255–282 (1950)MathSciNetGoogle Scholar
  16. 16.
    Lehoucq, R., Sorensen, D.C.: Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. 17, 789–821 (1996)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK user’s guide: solution of large scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia. Available at http://www.caam.rice.edu/software/ARPACK/ (1998)
  18. 18.
    Miminis, G., Paige, C.: Implicit shifting in the QR and related algorithms. SIAM J. Matrix Anal. Appl. 12, 385–400 (1991)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Parlett, B.N.: The symmetric eigenvalue problem. No. 20 in Classics in Applied Mathematics. SIAM, Philadelphia, PA (1998)Google Scholar
  20. 20.
    Parlett, B.N., Le, J.: Forward instability of tridiagonal QR. SIAM J. Matrix Anal. Appl. 4, 279–316 (1993)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Saad, Y.: On the rates of convergence of the Lanczos and the block Lanczos methods. SIAM J. Numer. Anal. 17, 687–706 (1980)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Saad, Y.: Numerical methods for large eigenvalue problems. John Wiley, New York. Available at http://www.cs.umn.edu/~saad/books.html (1992)MATHGoogle Scholar
  23. 23.
    Sadkane, M.: Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems. Numerische Mathematik 64, 195–212 (1993a)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Sadkane, M.: A block Arnoldi–Chebyshev method for computing leading eigenpairs of large sparse unsymmetric matrices. Numerische Mathematik 64, 181–194 (1993b)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Sadkane, M., Sidje, R.B.: Implementation of a variable block Davidson method with deflation for solving large sparse eigenproblems. Numer. Algor. 20(2), 217–240 (1999)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Scott, D.S.: Block Lanczos software for symmetric eigenvalue problems. Technical report ORNL/CSD-48, Oak Ridge National Laboratory, Oak Ridge, TN (1979)Google Scholar
  27. 27.
    Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Sorensen, D.C.: Deflation for implicitly restarted Arnoldi methods. Technical report CAAM:TR98-12, Rice University (1998)Google Scholar
  29. 29.
    Stathopoulos, A.: Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part I: seeking one eigenvalue. SIAM J. Sci. Comput. 29(2), 481–514 (2007)CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    Stathopoulos, A., McCombs, J.R.: Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part II: seeking many eigenvalues. SIAM J. Sci. Comput. 29(5), 2162–2188 (2007)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Stathopoulos, A., Saad, Y., Wu, K.: Dynamic thick restarting of the Davidson and the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput. 19, 227–245 (1998)CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23, 601–614 (2001)CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Stewart, G.W.: Matrix Algorithms II: Eigensystems. SIAM, Philadelphia (2001)MATHGoogle Scholar
  34. 34.
    Watkins, D.S.: Forward stability and transmission of shifts in the QR algorithm. SIAM J. Matrix Anal. Appl. 16, 469–487 (1995)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22, 602–616 (2000)CrossRefMathSciNetMATHGoogle Scholar
  36. 36.
    Ye, Q.: An adaptive block Lanczos algorithm. Numer. Algor. 12, 97–110 (1996)CrossRefMATHGoogle Scholar
  37. 37.
    Zhou, Y.: A block Chebyshev–Davidson method with inner-outer restart for large eigenvalue problems. Technical report, Southern Methodist University (to be submitted)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of MathematicsSouthern Methodist UniversityDallasUSA
  2. 2.Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations