Numerical Algorithms

, Volume 49, Issue 1–4, pp 221–233 | Cite as

Monotonic sequences related to zeros of Bessel functions

Original Paper


In the course of their work on Salem numbers and uniform distribution modulo 1, A. Akiyama and Y. Tanigawa proved some inequalities concerning the values of the Bessel function J0 at multiples of π, i.e., at the zeros of J1/2. This raises the question of inequalities and monotonicity properties for the sequences of values of one cylinder function at the zeros of another such function. Here we derive such results by differential equations methods.


Bessel functions Cylinder functions Inequalities Monotonicity properties 

Mathematics Subject Classifications (2000)

Primary 33C10 Secondary 34C10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akiyama, S., Tanigawa, Y.: Salem numbers and uniform distribution modulo 1. Publ. Math. (Debr.) 64, 329–341 (2004)MATHMathSciNetGoogle Scholar
  2. 2.
    Elbert, Á.: An approximation for the zeros of Bessel functions. Numer. Math. 59, 647–657 (1991)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Elbert, Á.: Some recent results on the zeros of Bessel functions and orthogonal polynomials. Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999). J. Comput. Appl. Math. 133(1–2), 65–83 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Elbert, Á., Gatteschi, L., Laforgia, A.: On the concavity of zeros of Bessel functions. Appl. Anal. 16, 261–278 (1983)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Elbert, Á., Laforgia, A.: On the square of the zeros of Bessel functions. SIAM J. Math. Anal. 15, 206–212 (1984)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Elbert, Á., Laforgia, A.: Monotonicity properties of the zeros of Bessel functions. SIAM J. Math. Anal. 17, 1483–1488 (1986)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Elbert, Á., Laforgia, A.: Further results on McMahon’s asymptotic approximations. J. Phys. A: Math. Gen. 33, 6333–6341 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gatteschi, L.: Valutazione dell’errore nella formula di McMahon per gli zeri della J n(x) di Bessel nel caso 0 ≤ n ≤ 1. Rivista Mat. Univ. Parma 1, 347–362 (1950)MATHMathSciNetGoogle Scholar
  9. 9.
    Gatteschi, L.: Funzioni Speciali. UTET, Torino (1973)Google Scholar
  10. 10.
    Gatteschi, L.: Asymptotics and bounds for the zeros of Laguerre polynomials: A survey. J. Comput. Appl. Math. 144, 7–27 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)MATHGoogle Scholar
  12. 12.
    Laforgia, A.: Sugli zeri delle funzioni di Bessel. Calcolo 17, 211–220 (1980)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lorch, L., Szego, P.: Higher monotonicity properties of certain Sturm-Liouville functions. Acta Math. 109, 55–73 (1963)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Muldoon, M.E.: Continuous ranking of zeros of special functions. J. Math. Anal. Appl. (2008). doi:10.1016/j.jmaa.2008.01.082
  15. 15.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Mathematics & StatisticsYork UniversityTorontoCanada

Personalised recommendations