Numerical Algorithms

, Volume 49, Issue 1–4, pp 53–84 | Cite as

Gamma function inequalities

Original Paper

Abstract

We prove various new inequalities for Euler’s gamma function. One of our theorems states that the double-inequality
$$\alpha \cdot \Bigl(\frac{1}{\Gamma\,(\sqrt{x})}+\frac{1}{\Gamma\,(\sqrt{y})}\Bigr) {\kern-1pt}<{\kern-1pt} \frac{1}{\Gamma\,( \sqrt{x+y-xy})}+ \frac{1}{\Gamma\,( \sqrt{xy})} {\kern-1pt} <{\kern-1pt} \beta \cdot \Bigl( \frac{1}{\Gamma\,(\sqrt{x})}+\frac{1}{\Gamma\,(\sqrt{y})}\Bigr)$$
is valid for all real numbers x,y ∈ (0,1) with the best possible constant factors \(\alpha=1/\sqrt{2}=0.707...\) and β = 1.

Keywords

Gamma function Inequalities Monotonicity Convexity Mean values 

Mathematics Subject Classification (2000)

33B15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)Google Scholar
  2. 2.
    Alsina, C., Tomás, M.S.: A geometrical proof of a new inequality for the gamma function. J. Inequal. Pure Appl. Math. 6(2), Art. 48 (2005)Google Scholar
  3. 3.
    Alzer, H.: Inequalities for the gamma function. Proc. Am. Math. Soc. 128, 141–147 (1999)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Alzer, H.: A power mean inequality for the gamma function. Monatsh. Math. 131, 179–188 (2000)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Alzer, H.: Mean-value inequalities for the polygamma functions. Aequ. Math. 61, 151–161 (2001)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Alzer, H.: On a gamma function inequality of Gautschi. Proc. Edinb. Math. Soc. 45, 589–600 (2002)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Alzer, H.: Inequalities involving Γ (x) and Γ (1/x). J. Comput. Appl. Math. 192, 460–480 (2006)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Alzer, H., Berg, C.: Some classes of completely monotonic functions, II. Ramanujan J. 11, 225–248 (2006)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Alzer, H., Ruscheweyh, S.: A subadditive property of the gamma function. J. Math. Anal. Appl. 285, 564–577 (2003)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Daróczy, Z.: On the general solution of the functional equation f(x + y − xy) + f(xy) = f(x) + f(y). Aequ. Math. 6, 130–132 (1971)CrossRefMATHGoogle Scholar
  11. 11.
    Davidson, T.M.K.: The complete solution of Hosszú’s functional equation over a field. Aequ. Math. 11, 273–276 (1974)CrossRefGoogle Scholar
  12. 12.
    Davis, P.J.: Leonhard Euler’s integral: a historical profile of the gamma function. Amer. Math. Mon. 66, 849–869 (1959)CrossRefMATHGoogle Scholar
  13. 13.
    Gautschi, W.: A harmonic mean inequality for the gamma function. SIAM J. Math. Anal. 5, 278–281 (1974)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Gautschi, W.: Some mean value inequalities for the gamma function. SIAM J. Math. Anal. 5, 282–292 (1974)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Gautschi, W.: The incomplete gamma function since Tricomi. In: Tricomi’s Ideas and Contemporary Applied Mathematics, Atti Convegni Lincei, vol. 147, pp. 203–237. Accad. Naz. Lincei, Rome (1998)Google Scholar
  16. 16.
    Giordano, C., Laforgia, A.: Inequalities and monotonicity properties for the gamma function. J. Comput. Appl. Math. 133, 387–396 (2001)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Kershaw, D., Laforgia, A.: Monotonicity results for the gamma function. Atti Accad. Scienze Torino 119, 127–133 (1985)MathSciNetMATHGoogle Scholar
  18. 18.
    Kim, T., Adiga, C.: On the q-analogue of gamma functions and related inequalities. J. Inequal. Pure Appl. Math. 6(4), Art. 118 (2005)Google Scholar
  19. 19.
    Laforgia, A., Sismondi, S.: A geometric mean inequality for the gamma function. Boll. Un. Ital. A 3(7), 339–342 (1989)MathSciNetMATHGoogle Scholar
  20. 20.
    Lucht, L.G.: Mittelwertungleichungen für Lösungen gewisser Differenzengleichungen. Aequ. Math. 39, 204–209 (1990)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Maksa, G., Páles, Z.: On Hosszú’s functional inequality. Publ. Math. Debrecen 36, 187–189 (1989)MathSciNetMATHGoogle Scholar
  22. 22.
    McD. Mercer, A.: Some new inequalities for the gamma, beta and zeta functions. J. Inequal. Pure Appl. Math. 7(1), Art. 29 (2006)Google Scholar
  23. 23.
    Mitrinović, D.S.: Analytic Inequalities. Springer, New York (1970)MATHGoogle Scholar
  24. 24.
    Neuman, E.: Inequalities involving a logarithmically convex function and their applications to special functions. J. Inequal. Pure Appl. Math. 7(1), Art. 16 (2006)Google Scholar
  25. 25.
    Sándor, J.: A note on certain inequalities for the gamma function. J. Inequal. Pure Appl. Math. 6(3), Art. 61 (2005)Google Scholar
  26. 26.
    Webster, R.J.: cos(sinx) ≥ |cosx| ≥ |sin(cosx)|. Math. Gaz. 68, 37 (1984)CrossRefGoogle Scholar
  27. 27.
    Wright, E.M.: A generalisation of Schur’s inequality. Math. Gaz. 40, 217 (1956)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.WaldbrölGermany

Personalised recommendations