Numerical Algorithms

, Volume 49, Issue 1–4, pp 169–185 | Cite as

Spectral transformations of measures supported on the unit circle and the Szegő transformation

  • Luis Garza
  • Javier Hernández
  • Francisco Marcellán
Original Paper

Abstract

In this paper we analyze spectral transformations of measures supported on the unit circle with real moments. The connection with spectral transformations of measures supported on the interval [−1,1] using the Szegő transformation is presented. Some numerical examples are studied.

Keywords

Measures on the unit circle Orthogonal polynomials Carathéodory functions Spectral transformations LU factorization 

Mathematics Subject Classifications (2000)

42C05 15A23 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bueno, M.I., Marcellán, F.: Darboux transformations and perturbation of linear functionals. Linear Alg. Appl. 384, 215–242 (2004)MATHCrossRefGoogle Scholar
  2. 2.
    Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)MATHGoogle Scholar
  3. 3.
    Daruis, L., Hernández, J., Marcellán, F.: Spectral transformations for Hermitian Toeplitz matrices. J. Comput. Appl. Math. 202, 155–176 (2007)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Garza, L., Hernández, J., Marcellán, F.: Orthogonal polynomials and measures on the unit circle. The Geronimus transformations. J. Comput. Appl. Math. (in press)Google Scholar
  5. 5.
    Geronimus, Ya.L.: Polynomials orthogonal on a circle and their applications. Amer. Math. Soc. Transl. 1, 1–78, Providence, RI (1962)Google Scholar
  6. 6.
    Godoy, E., Marcellán, F.: Orthogonal polynomials and rational modification of measures. Canada J. Math. 45, 930–943 (1993)MATHGoogle Scholar
  7. 7.
    Ismail, M.E.H., Li, X.: On sieved orthogonal polynomials IX: orthogonality on the unit circle, Pacific J. Math. 153, 289–297 (1992)MATHMathSciNetGoogle Scholar
  8. 8.
    Marcellán, F.: Polinomios ortogonales no estándar. Aplicaciones en análisis numérico y teoría de aproximación. Rev. Acad. Colomb. Ciencias Exactas, Físicas y Naturales, 29(117), 1–17 (2006) (in Spanish)Google Scholar
  9. 9.
    Marcellán, F., Hernández, J.: Geronimus spectral transforms and measures on the complex plane. J. Comput. Appl. Math. (in press)Google Scholar
  10. 10.
    Marcellán, F., Hernández, J.: Christoffel transforms and Hermitian linear functionals. Mediterr. J. Math. 2, 451–458 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Marcellán, F., Sansigre, G.: Symmetrization, quadratic decomposition and cubic transformations of orthogonal polynomials on the unit circle. In: Brezinski, C. et al. (eds.) Proceedings Erice International Symposium on Orthogonal Polynomials and Their Applications. IMACS Annals on Comput. and Appl. Math. pp. 341–345 (1991)Google Scholar
  12. 12.
    Peherstorfer, F.: A special class of polynomials orthogonal on the unit circle including the associated polynomials. Constr. Approx. 12, 161–185 (1996)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Simon, B.: Orthogonal polynomials on the unit circle, two volumes. Amer. Math. Soc. Colloq. Publ. Series, vol. 54, Amer. Math. Soc. Providence, RI (2005)Google Scholar
  14. 14.
    Szegő, G.: Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. Series, vol. 23, Amer. Math. Soc., Providence, RI (1975)Google Scholar
  15. 15.
    Zhedanov, A.: Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math. 85, 67–83 (1997)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Luis Garza
    • 1
    • 2
  • Javier Hernández
    • 3
  • Francisco Marcellán
    • 1
  1. 1.Universidad Carlos III de MadridLeganés, MadridSpain
  2. 2.Universidad Autónoma de TamaulipasCiudad VictoriaMexico
  3. 3.Universidad Centroccidental Lisandro AlvaradoBarquisimetoVenezuela

Personalised recommendations