Numerical Algorithms

, Volume 46, Issue 1, pp 45–58

A second order numerical scheme for the solution of the one-dimensional Boussinesq equation

Original Paper

Abstract

A predictor–corrector (P-C) scheme is applied successfully to a nonlinear method arising from the use of rational approximants to the matrix-exponential term in a three-time level recurrence relation. The resulting nonlinear finite-difference scheme, which is analyzed for local truncation error and stability, is solved using a P-C scheme, in which the predictor and the corrector are explicit schemes of order 2. This scheme is accelerated by using a modification (MPC) in which the already evaluated values are used for the corrector. The behaviour of the P-C/MPC schemes is tested numerically on the Boussinesq equation already known from the bibliography free of boundary conditions. The numerical results are derived for both the bad and the good Boussinesq equation and conclusions from the relevant known results are derived.

Keywords

Soliton Boussinesq equation Finite-difference method Predictor–corrector 

Mathematics Subject Classifications (2000)

35Q51 35Q53 65M06 78M20 65Y10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform, SIAM Studies in Applied Mathematics 4. Society for Industrial and Applied Mathematics, Philadelphia (1981)Google Scholar
  2. 2.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. London Math. Soc. Lect. Note Ser. 149 (1991)Google Scholar
  3. 3.
    Airy, G.B.: Tides and waves. Encycl. Metrop. Lond. Art 192, 241–396 (1845)Google Scholar
  4. 4.
    Attili, B.S.: The Adomian decomposition method for solving the Boussinesq equation arising in water wave propagation. Numer. Methods Partial Differ. Equ. 22, 1337–1347 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bogolubsky, I.L.: Some examples of inelastic soliton interaction. Comp. Phys. Commun. 13, 149–155 (1977)CrossRefGoogle Scholar
  6. 6.
    Boussinesq, M.J.: Théorie de l’intumescence appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris 72, 755–759 (1871)Google Scholar
  7. 7.
    Boussinesq, M.J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblemant perielles de la surface au fond. J. Math. Pures Appl. 17(2), 55–108 (1872)Google Scholar
  8. 8.
    Bratsos, A.G.: The solution of the Boussinesq equation using the method of lines. Comput. Methods Appl. Mech. Eng. 157, 33–44 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bratsos, A.G.: A parametric scheme for the numerical solution of the Boussinesq equation. Korean J. Comput. Appl. Math. 8(1), 45–57 (2001)MATHMathSciNetGoogle Scholar
  10. 10.
    Bratsos, A.G., Tsitouras, Ch., Natsis, D.G.: Linearized numerical schemes for the Boussinesq equation. Appl. Num. Anal. Comp. Math. 2(1), 34–53 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bratsos, A.G.: A modified predictor–corrector scheme for the two-dimensional sine-Gordon equation. Numer. Algorithms 43(2), 1–14 (2007)MathSciNetGoogle Scholar
  12. 12.
    Bratsos, A.G.: A third order numerical scheme for the two-dimensional sine-Gordon equation. Math. Comput. Simul. (in press)Google Scholar
  13. 13.
    Bratsos, A.G., Famelis, I.Th., Prospathopoulos, A.M.: A parametric finite-difference method for shallow sea waves. Int. J. Numer. Methods Fluids 53, 129–147 (2007)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Daripa, P., Hua, W.: A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: filtering and regularization techniques. Appl. Math. Comput. 101(2–3), 159–207 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Defrutos, J., Ortega, T., Sanz-Sema, J.M.: A Hamiltonian explicit algorithm with spectral accuracy for the “good” Boussinesq equation. Comput. Methods Appl. Mech. Eng. 80, 417–423 (1990)CrossRefGoogle Scholar
  16. 16.
    Defrutos, J., Ortega, T., Sanz-Sema, J.M.: Pseudospectral method for the “good” Boussinesq equation. Math. Comput. 57, 109–122 (1991)CrossRefGoogle Scholar
  17. 17.
    El-Zoheiry, H.: Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation. Appl. Numer. Math. 45, 161–173 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Feng, Z.S.: Traveling solitary solutions to the generalized Boussinesq equation. Wave Motion 37(1), 17–23 (2003)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  20. 20.
    Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)MATHCrossRefGoogle Scholar
  21. 21.
    Goursat, E.: Le problème de Bäcklund. Mem. Sci. Math. Fasc. 6, Gauthier-Villars, Paris (1925)MATHGoogle Scholar
  22. 22.
    Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave. J. Math. Phys. 14, 805–809 (1973)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hirota, R.: Exact N-soliton solutions of the wave of long waves in shallow-water and in nonlinear lattices. J. Math. Phys. 14, 810–814 (1973)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Ismail, M.S., Bratsos, A.G.: A predictor–corrector scheme for the numerical solution of the Boussinesq equation. J. Appl. Math. Comput. 13(1–2), 11–27 (2003)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Korteweg, D.J., de Vries, G.G.: On the change of form of long-waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(5), 422–443 (1895)Google Scholar
  26. 26.
    Lamb, G.L.: Elements of Soliton Theory. Wiley, New York (1980)MATHGoogle Scholar
  27. 27.
    McKean H.P.: Boussinesq’s equation on a circle. Commun. Pure Appl. Math. 34, 599–691 (1981)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650–654 (1992)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Manoranjan, V.S., Mitchell, A.R., Morris, J.LI.: Numerical solutions of the Good Boussinesq equation. SIAM J. Sci. Statist. Comput. 5, 946–957 (1984)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Matsuo, T.: New conservative schemes with discrete variational derivatives for nonlinear wave equations. J. Comput. Appl. Math. 203, 32–56 (2007)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Miura, R.M.: Bäcklund transformations. In: Dold, A., Eckman, B. (eds.) Lecture Notes in Mathematics, vol. 515. Springer, Berlin (1976)Google Scholar
  32. 32.
    Nimmo, J.J.C., Freeman, N.C.: A method of obtaining the N-soliton solutions of the Boussinesq equation in terms of a Wronskian. Phys. Lett. 95A, 4–6 (1983)MathSciNetGoogle Scholar
  33. 33.
    Nimmo, J.J.C., Freeman, N.C.: The use of Bäcklund transformation in obtaining the N-soliton solutions in Wronskian form. J. Phys. A 17, 1415–1424 (1984)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Olver, P.J.: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107. Springer, Berlin (1986)Google Scholar
  35. 35.
    Pani, A.K., Saranga, H.: Finite element Galerkin method for the “Good” Boussinesq equation. Nonlinear Anal. 29(8), 937–956 (1997)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Rayleigh, J.W.S.: On waves. Philos. Mag. Ser. 1(5), 257–279 (1876)Google Scholar
  37. 37.
    Scott, R.J.: Report of the Committee of Waves, Report of the 7th Meeting of the British Association for the Advancement of Science, pp. 417–496. Murray, Liverpool (1838)Google Scholar
  38. 38.
    Scott, R.J.: Report on Waves, Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–390. Murray, London (1844)Google Scholar
  39. 39.
    Stokes, G.: On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441–455 (1847)Google Scholar
  40. 40.
    Twizell, E.H.: Computational Methods for Partial Differential Equations. Ellis Horwood Limited, England (1984)MATHGoogle Scholar
  41. 41.
    Wahlquist, H., Estabrook, F.B.: Bäcklund transformation for solutions of the Korteweg-de Vries equation. Phys. Rev. Lett. 31, 1386–1390 (1973)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Wazwaz, A.M.: Constructions of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos, Solitons Fractals 12, 1549–1556 (2001)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Wazwaz, A. M.: A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 40, 499–508 (2004)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)MATHGoogle Scholar
  45. 45.
    Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)CrossRefGoogle Scholar
  46. 46.
    Zakharov, V. E.: Randomization problem for 1-dimensional chains of nonlinear operators. Z. Eksp. Teor. Fiz. 65, 219–228 (1973)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.Department of MathematicsTechnological Educational Institution (T.E.I.) of AthensAthensGreece

Personalised recommendations