Numerical Algorithms

, Volume 45, Issue 1–4, pp 389–408 | Cite as

Stable simulation of fluid flow with high-Reynolds number using Ehrenfests’ steps

Original Paper

Abstract

The Navier–Stokes equations arise naturally as a result of Ehrenfests’ coarse-graining in phase space after a period of free-flight dynamics. This point of view allows for a very flexible approach to the simulation of fluid flow for high-Reynolds number. We construct regularisers for lattice Boltzmann computational models. These regularisers are based on Ehrenfests’ coarse-graining idea and could be applied to schemes with either entropic or non-entropic quasiequilibria. We give a numerical scheme which gives good results for the standard test cases of the shock tube and the flow past a square cylinder.

Keywords

Navier–Stokes equations Ehrenfests’ steps Numerical stabilisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansumali, S., Karlin, I.V.: Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev., E 66(2), 026311.1–026311.6 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Ansumali, S.S, Karlin, I.V., Ottinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63(6), 798–804 (2003)CrossRefGoogle Scholar
  3. 3.
    Ansumali, S., Chikatamarla, S.S., Frouzakis, C.E., Boulouchos, K.: Entropic lattice Boltzmann simulation of the flow past square-cylinder. Int. J. Mod. Phys. C 15, 435–445 (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Baskar, G., Babu, V.: Simulation of the unsteady flow around rectangular cylinders using the ISLB method. In: 34th AIAA Fluid Dynamics Conference and Exhibit, pp. 2004–2651. AIAA, Washington, DC (2004)Google Scholar
  5. 5.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)MATHCrossRefGoogle Scholar
  6. 6.
    Brownlee, R.A., Gorban, A.N., Levesley, J.: Stabilisation of the lattice-Boltzmann method using the Ehrenfests’ coarse-graining. Phys. Rev., E 74, 037703 (2006)CrossRefGoogle Scholar
  7. 7.
    Brownlee, R.A., Gorban, A.N., Levesley, J.: Stability and stabilization of the lattice Boltzmann method. Phys. Rev., E 75(3), 036711 (2007)CrossRefGoogle Scholar
  8. 8.
    Chen, H., Chen, S., Matthaeus, W.: Recovery of the Navier–Stokes equation using a lattice–gas Boltzmann method. Phys. Rev., A 45, R5339–R5342 (1992)CrossRefGoogle Scholar
  9. 9.
    Davis, R.W., Moore, E.F.: A numerical study of vortex shedding from rectangles. J. Fluid Mech. 116, 475–506 (1982)MATHCrossRefGoogle Scholar
  10. 10.
    Dellar, P.J.: Compound waves in a thermohydrodynamic lattice BGK scheme using non-perturbative equilibria. Europhys. Lett. 57, 690–696 (2002)CrossRefGoogle Scholar
  11. 11.
    Ehrenfest, P., Ehrenfest, T.: The conceptual foundations of the statistical approach in mechanics. Dover, New York (1990)Google Scholar
  12. 12.
    Gorban, A.N.: Basic types of coarse-graining. In: Gorban, A.N., Kazantzis, N., Kevrekidis, I.G., Öttinger, H.-C., Theodoropoulos, C. (eds.) Model Reduction and Coarse-graining Approaches for Multiscale Phenomena, pp. 117–176. Springer, Berlin (cond-mat/0602024) (2006)CrossRefGoogle Scholar
  13. 13.
    Gorban, A., Kaganovich, B., Filippov, S., Keiko, A., Shamansky, V., Shirkalin, I.: Thermodynamic Equilibria and Extrema: Analysis of Attainability Regions and Partial Equilibrium. Springer, Berlin (2006)Google Scholar
  14. 14.
    Gorban, A.N., Karlin, I.V.: Invariant manifolds for physical and chemical kinetics. In: Lecture Notes in Physics, vol. 660. Springer, Berlin (2005)Google Scholar
  15. 15.
    Gorban, A.N., Karlin, I.V., Öttinger, H.C., Tatarinova, L.L.: Ehrenfest’s argument extended to a formalism of nonequilibrium thermodynamics. Phys. Rev., E 62, 066124 (2001)CrossRefGoogle Scholar
  16. 16.
    Higuera, F., Succi, S., Benzi, R.: Lattice gas – dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)CrossRefGoogle Scholar
  17. 17.
    Karlin, I.V., Ansumali, S., Frouzakis, C.E., Chikatamarla, S.S.: Elements of the lattice Boltzmann method I: linear advection equation. Commun. Comput. Phys. 1, 616–655 (2006)Google Scholar
  18. 18.
    Karlin, I.V., Chikatamarla, S.S., Ansumali, S.: Elements of the lattice Boltzmann method II: Kinetics and hydrodynamics in one dimension. Commun. Comput. Phys. 2, 196–238 (2007)MathSciNetGoogle Scholar
  19. 19.
    Karlin, I.V., Ferrante, A., Öttinger, H.C.: Perfect entropy functions of the lattice Boltzmann method. Europhys. Lett. 47, 182–188 (1999)CrossRefGoogle Scholar
  20. 20.
    Karlin, I.V., Gorban, A.N., Succi, S., Boffi, V.: Maximum entropy principle for lattice kinetic equations. Phys. Rev. Lett. 81, 6–9 (1998)CrossRefGoogle Scholar
  21. 21.
    Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)MATHGoogle Scholar
  22. 22.
    Okajima, A.: Strouhal numbers of rectangular cylinders. J. Fluid Mech. 123, 379–398 (1982)CrossRefGoogle Scholar
  23. 23.
    Shan, X., He, X.: Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80, 65–68 (1998)CrossRefGoogle Scholar
  24. 24.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. OUP, New York (2001)MATHGoogle Scholar
  25. 25.
    Qian, Y.H., D. d’Humieres, Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)MATHCrossRefGoogle Scholar
  26. 26.
    Vickery, B.J.: Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulent stream. J. Fluid Mech. 25, 481–494 (1966)CrossRefGoogle Scholar
  27. 27.
    Yablonskii, G.S., Bykov, V.I., Gorban, A.N., Elokhin, V.I.: Kinetic models of catalytic reactions. In: Compton, R.G. (ed.) Series Comprehensive Chemical Kinetics, vol. 32. Elsevier, Amsterdam (1991)Google Scholar
  28. 28.
    Zeldovich, Y.B.: Proof of the uniqueness of the solution of the equations of the law of mass action. In: Ostriker, J.P. (ed.) Selected Works of Yakov Borisovich Zeldovich, vol. 1, pp. 144–148. Princeton University Press, Princeton, NJ (1996)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of LeicesterLeicesterUK

Personalised recommendations