Numerical Algorithms

, 43:123 | Cite as

A matrix decomposition MFS algorithm for certain linear elasticity problems

Original Paper


We propose an efficient matrix decomposition Method of Fundamental Solutions algorithm for the solution of certain two-dimensional linear elasticity problems. In particular, we consider the solution of the Cauchy–Navier equations in circular domains subject to Dirichlet boundary conditions, that is when the displacements are prescribed on the boundary. The proposed algorithm is extended to the case of annular domains. Numerical experiments for both types of problems are presented.


method of fundamental solutions Cauchy–Navier system matrix decomposition algorithm fast Fourier transform circulant matrices 

Mathematics Subject Classifications (2000)

Primary 35J55 35E05 65N35 Secondary 65N38 65F30 65T50 


  1. 1.
    Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)MathSciNetMATHGoogle Scholar
  2. 2.
    Berger, J.R., Karageorghis, A.: The method of fundamental solutions for layered elastic materials. Eng. Anal. Bound. Elem. 25, 877–886 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Bialecki, B., Fairweather, G.: Matrix decomposition algorithms for separable elliptic boundary value problems in two space dimensions. J. Comput. Appl. Math. 46(3), 369–386 (1993)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22(4), 644–669 (1985)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Burgess, G., Maharejin, E.: A comparison of the boundary element and superposition methods. Comput. Struct. 19(5–6), 697–705 (1984)CrossRefMATHGoogle Scholar
  6. 6.
    Chen, C.W., Young, D.L., Tsai, C.C., Murugesan, K.: The method of fundamental solutions for inverse 2D Stokes problems. Comput. Mech. 37(1), 2–14 (2005)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Cho, H.A., Golberg, M.A., Muleshkov, A.S., Li, X.: Trefftz methods for time dependent partial differential equations. Comput. Mat. Cont. 1(1), 1–37 (2004)Google Scholar
  8. 8.
    Davis, P.J.: Circulant Matrices. Wiley, New York-Chichester-Brisbane (A Wiley-Interscience Publication, Pure and Applied Mathematics) (1979)MATHGoogle Scholar
  9. 9.
    Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Numerical treatment of boundary integral equations. Adv. Comput. Math. 9(1-2), 69–95 (1998)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Fairweather, G., Karageorghis, A., Martin, P.A.: The method of fundamental solutions for scattering and radiation problems. Eng. Anal. Bound. Elem. 27, 759–769 (2003)CrossRefMATHGoogle Scholar
  11. 11.
    Fenner, R.T.: A force supersition approach to plane elastic stress and strain analysis. J. Strain Anal. 36(5), 517–529 (2001)CrossRefGoogle Scholar
  12. 12.
    Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Boundary Integral Methods: Numerical and Mathematical Aspects. Comput. Eng., vol. 1, pp. 103–176. WIT/Comput. Mech. Publ., Boston, Massachusetts (1999)Google Scholar
  13. 13.
    Kane, J.H.: Boundary Element Analysis in Engineering Continuum Mechanics. Prentice Hall, Engelwood Cliffs, New Jersey (1994)Google Scholar
  14. 14.
    Karageorghis, A., Fairweather, G.: The method of fundamental solutions for axisymmetric elasticity problems. Comput. Mech. 25(6), 524–532 (2000)CrossRefMATHGoogle Scholar
  15. 15.
    Kitagawa, T.: On the numerical stability of the method of fundamental solution applied to the Dirichlet problem. Jpn. J. Appl. Math. 5(1), 123–133 (1988)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kołodziej, J.A.: Review of applications of the boundary collocation methods in mechanics of continuous media. Solid Mech. Arch. 12, 187–231 (1987)MATHGoogle Scholar
  17. 17.
    Kupradze, V.D.: On a method of solving approximately the limiting problems of mathematical physics. Ž. Vyčisl. Mat. Mat. Fiz. 4, 1118–1121 (1964)MathSciNetGoogle Scholar
  18. 18.
    Kupradze, V.D., Aleksidze, M.A.: The method of functional equations for the approximate solution of certain boundary value problems. Comput. Methods Math. Phys. 4, 82–126 (1964)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Kythe, P.K.: Fundamental Solutions for Differential Operators and Applications. Birkhäuser, Boston, Massachusetts (1996)MATHGoogle Scholar
  20. 20.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover, New York (1944)MATHGoogle Scholar
  21. 21.
    Maharejin, E.: An extension of the superposition method for plane anisotropic elastic bodies. Comput. Struct. 21(5), 953–958 (1985)CrossRefGoogle Scholar
  22. 22.
    Marin, L., Lesnic, D.: The method of fundamental solutions for the Cauchy problem in two-dimensional linear elasticity. Int. J. Solids Struct. 41(13), 3425–3438 (2004)CrossRefMATHGoogle Scholar
  23. 23.
    Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14(4), 638–650 (1977)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Patterson, C., Sheikh, M.A.: On the use of fundamental solutions in Trefftz method for potential and elasticity problems. In: Brebbia, C.A. (ed) Boundary Element Methods in Engineering. Proceedings of the Fourth International Seminar on Boundary Element Methods, pp. 43–54. Springer, Berlin Heidelberg New York (1982)Google Scholar
  25. 25.
    Poullikkas, A., Karageorghis, A., Georgiou, G.: The method of fundamental solutions for three-dimensional elastostatics problems. Comput. Struct. 80(3-4), 365–370 (2002)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, UK (1992)Google Scholar
  27. 27.
    Raamachandran, J., Rajamohan, C.: Analysis of composite plates using charge simulation method. Eng. Anal. Bound. Elem. 18(2), 131–135 (1996)CrossRefGoogle Scholar
  28. 28.
    Redekop, D.: Fundamental solutions for the collocation method in planar elastostatics. Appl. Math. Model. 6(5), 390–393 (1982)CrossRefMATHGoogle Scholar
  29. 29.
    Redekop, D., Cheung, R.S.W.: Fundamental solutions for the collocation method in three-dimensional elastostatics. Comput. Struct. 26(4), 703–707 (1987)CrossRefMATHGoogle Scholar
  30. 30.
    Redekop, D., Thompson, J.C.: Use of fundamental solutions in the collocation method in axisymmetric elastostatics. Comput. Struct. 17(4), 485–490 (1983)CrossRefGoogle Scholar
  31. 31.
    Rjasanow, S.: Optimal preconditioner for boundary element formulation of the Dirichlet problem in elasticity. Math. Methods Appl. Sci. 18(8), 603–613 (1995)CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Smyrlis, Y.-S.: Applicability and applications of the method of fundamental solutions. Tech. Report TR–03–2006, Department of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus (2006)Google Scholar
  33. 33.
    Smyrlis, Y.-S., Karageorghis, A.: A matrix decomposition MFS algorithm for axisymmetric potential problems. Eng. Anal. Bound. Elem. 28, 463–474 (2004)CrossRefMATHGoogle Scholar
  34. 34.
    Smyrlis, Y.-S., Karageorghis, A.: Numerical analysis of the MFS for certain harmonic problems. M2AN Math. Model. Numer. Anal. 38(3), 495–517 (2004)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Smyrlis, Y.-S., Karageorghis, A.: The method of fundamental solutions for stationary heat conduction problems in rotationally symmetric domains. SIAM J. Sci. Comput. 26(4), 1493–1512 (2006)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Tsangaris, Th., Smyrlis, Y.-S., Karageorghis, A.: Numerical analysis of the MFS for harmonic problems in annular domains. Numer. Methods Partial Differ. Equ. 22, 507–539 (2006)CrossRefMathSciNetMATHGoogle Scholar
  37. 37.
    Young, D.L., Jane, S.J., Fan, C.M., Murugesan, K., Tsai, C.C.: The method of fundamental solutions for 2d and 3d Stokes problems. J. Comput. Phys. 211(1), 1–8 (2006) (short note)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. Karageorghis
    • 1
  • Y. -S. Smyrlis
    • 1
  • T. Tsangaris
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of CyprusNicosiaCyprus

Personalised recommendations