Numerical Algorithms

, Volume 41, Issue 1, pp 17–33 | Cite as

Digital total variation filtering as postprocessing for Chebyshev pseudospectral methods for conservation laws

Article

Digital total variation filtering is analyzed as a fast, robust, post-processing method for accelerating the convergence of pseudospectral approximations that have been contaminated by Gibbs oscillations. The method, which originated in image processing, can be combined with spectral filters to quickly post-process large data sets with sharp resolution of discontinuities and with exponential accuracy away from the discontinuities.

Keywords

conservation laws digital total variation filtering Gibbs phenomenon numerical partial differential equations pseudospectral methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.P. Boyd, Chebyshev and Fourier Spectral Methods, second edition (Dover, New York, 2000).Google Scholar
  2. [2]
    A. Burgel, T. Grahs and T. Sonar, From continuous recovery to discrete filtering in numerical approximations of conservation laws, Appl. Numer. Math. 42 (2002) 47–60.CrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Burgel and T. Sonar, Discrete filtering of numerical solutions to hyperbolic conservation laws, Int. J. Numer. Methods Fluids 40 (2002) 263–271.CrossRefMathSciNetGoogle Scholar
  4. [4]
    C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods for Fluid Dynamics (Springer, Berlin Heidelberg New York, 1988).Google Scholar
  5. [5]
    T. Chan, S. Osher and J. Shen, The digital TV filter and nonlinear denoising, IEEE Trans. Image Process. 10(2) (2001).Google Scholar
  6. [6]
    I. Christie G.H. Ganser and J.M. Sanz-Serna, Numerical solution of a hyperbolic system of conservation laws with source term arising in a fluidized bed model, J. Comput. Phys. 93(2) (1991) 297–311.CrossRefGoogle Scholar
  7. [7]
    I. Christie and C. Palencia, An exact Riemann solver for a fluidized bed model, IMA J. Numer. Anal. 11 (1991) 493–508.CrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Gelb, A hybrid approach to spectral reconstruction of piecewise smooth functions, J. Sci. Comput. 15 (2001) 293–322.CrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Gelb and E. Tadmor, Detection of edges in spectral data, Appl. Comput. Harmon. Anal. 7 (1999) 101–135.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    A. Gelb and E. Tadmor, Detection of edges in spectral data II: Non-linear enhancement, SIAM J. Numer. Anal. 38 (2000) 1389–1408.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    A. Gelb and E. Tadmor, Enhanced spectral viscosity approximations for conservation laws, Appl. Numer. Math. 33 (2000) 3–21.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. Gelb and E. Tadmor, Spectral reconstruction of piecewise smooth functions from their discrete data, Model. Math. Anal. Numer. 36(2) (2002) 155–175.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    A. Gelb and J. Tanner, Robust reprojection methods for the resolution of the Gibbs phenomenon, To appear in Appl. Comput. Harmon. Anal. (January 2005).Google Scholar
  14. [14]
    D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods (SIAM, Philadelphia, Pennsylvania, 1977).MATHGoogle Scholar
  15. [15]
    D. Gottlieb and C. Shu, On the Gibbs phenomenon IV: Recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function, Math. Comput. 64 (1995) 1081–1095.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    D. Gottlieb and C. Shu, On the Gibbs phenomenon V: Recovering exponential accuracy from collocation point values of a piecewise analytic function, Numer. Math. 71 (1995) 511–526.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    D. Gottlieb and C. Shu, On the Gibbs phenomenon III: Recovering exponential accuracy in a subinterval from a partial sum of a piecewise analytic function, SIAM J. Numer. Anal. 33 (1996) 280–290.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    D. Gottlieb and C. Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39(4) (1997) 644–668.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    D. Gottlieb, C.-W. Shu, A. Solomonoff and H. Vandeven, On the Gibbs phenomenon I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function, J. Comput. Appl. Math. 43 (1992) 81–98.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    D. Gottlieb and E. Tadmor, Recovering pointwise values of discontinuous data within spectral accuracy, in: Progress and Supercomputing in Computational Fluid Dynamics, eds. E.M. Murman and S.S. Abarbanel (Birkhäuser, Boston, 1985) pp. 357–375.Google Scholar
  21. [21]
    Z. Jackiewicz, Determinination of optimal parameters for the Chebyshev-Gegenbauer reconstruction method, SIAM J. Sci. Comput. 25(4) (2003).Google Scholar
  22. [22]
    R. Kosloff and H. Tal-Ezer, A modified Chebyshev pseudospectral method with an O(1/N) time step restriction, J. Comput. Phys. 104 (1993) 457–469.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    A. Fatemi, L. Rudin and S. Osher, in: Proceedings of the 11th Annual International Conference of the Center for Nonlinear Studies on Experimental Mathematics (1992) pp. 259–268.Google Scholar
  24. [24]
    H. Ma., Chebyshev–Legendre super spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal. 35 (1998) 893–908.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    S. Osher and J. Shen, Digitized PDE method for data restoration, in: Analytic-Computational Methods in Applied Mathematics, chapter 16, ed. G. Anastassiou (Chapman and Hall/CRC, 2000) pp. 751–771.Google Scholar
  26. [26]
    R. Pasquetti, On inverse methods for the resolution of the Gibbs phenomenon, J. Comput. Appl. Math. 170 (2004) 303–315.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    S.A. Sarra, Chebyshev super spectral viscosity method for a fluidized bed model, J. Comput. Phys. 186(2) (2003) 630–651.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    B. Shizgal and J. Jung, Towards the resolution of the Gibbs phenomena, J. Comput. Appl. Math. 161 (2003) 41–65.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    E. Tadmor, Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal. 26 (1989) 30–44.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    E. Tadmor, Numerical methods for fluid dynamics IV, in: Proceedings of the 1992 Conference on Numerical Methods for Fluid Dynamics (1993) pp. 69–82.Google Scholar
  31. [31]
    E. Tadmor and J. Tanner, Adaptive mollifers-high resolution recovery of piecewise smooth data from its spectral information, Found. Comput. Math. 2 (2002) 155–189.MATHMathSciNetGoogle Scholar
  32. [32]
    J. Tanner, Optimal filter and mollifier for piecewise smooth spectral data, Submitted to Math. Comput. (April 2004).Google Scholar
  33. [33]
    L.N. Trefethen, Spectral Methods in Matlab (SIAM, Philadelphia, 2000).MATHGoogle Scholar
  34. [34]
    H. Vandeven, Family of spectral filters for discontinuous problems, SIAM J. Sci. Comput. 6 (1991) 159–192.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsMarshall UniversityHuntingtonUSA

Personalised recommendations