Advertisement

Numerical Algorithms

, Volume 40, Issue 3, pp 285–303 | Cite as

Modified defect correction algorithms for ODEs. Part II: Stiff initial value problems

  • W. Auzinger
  • H. Hofstätter
  • W. Kreuzer
  • E. Weinmüller
Article

Abstract

As shown in part I of this paper and references therein, the classical method of Iterated Defect Correction (IDeC) can be modified in several nontrivial ways, extending the flexibility and range of applications of this approach. The essential point is an adequate definition of the defect, resulting in a significantly more robust convergence behavior of the IDeC iteration, in particular, for nonequidistant grids. The present part II is devoted to the efficient high-order integration of stiff initial value problems. By means of model problem investigation and systematic numerical experiments with a set of stiff test problems, our new versions of defect correction are systematically evaluated, and further algorithmic measures are proposed for the stiff case. The performance of the different variants under consideration is compared, and it is shown how strong coupling between non-stiff and stiff components can be successfully handled.

Keywords

defect correction stiff initial value problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Auzinger, A. Eder and R. Frank, Extending convergence theory for nonlinear stiff problems, part II, ANUM Preprint No. 22/01, Institite for Applied Mathematics and Numerical Analysis, Vienna University of Technology (2001). Google Scholar
  2. [2]
    W. Auzinger, R. Frank, H. Hofstätter and E. Weinmüller, Defektkorrektur zur numerischen Lösung steifer Anfangswertprobleme, Technical Report No. 131, Institut für Angewandte und Numerische Mathematik, TU Wien (2002). Google Scholar
  3. [3]
    W. Auzinger, R. Frank and G. Kirlinger, Asymptotic error expansions for stiff equations: Applications, Computing 43 (1990) 223–253. Google Scholar
  4. [4]
    W. Auzinger, R. Frank and G. Kirlinger, Extending convergence theory for nonlinear stiff problems, part I, BIT 36 (1996) 635–652. CrossRefGoogle Scholar
  5. [5]
    W. Auzinger, R. Frank, W. Kreuzer and E. Weinmüller, Computergestützte Analyse verschiedener Varianten der Iterierten Defektkorrektur unter besonderer Berücksichtigung steifer Differentialgleichungen, ANUM Preprint No. 20/01, Department of Applied Mathematics and Numerical Analysis, Vienna University of Technology (2001). Google Scholar
  6. [6]
    W. Auzinger, H. Hofstätter, W. Kreuzer and E. Weinmüller, Modified defect correction algorithms for ODEs. Part I: General theory, Numer. Algorithms 36 (2004) 135–156. CrossRefGoogle Scholar
  7. [7]
    W. Auzinger, O. Koch and E. Weinmüller, New variants of defect correction for boundary value problems in ordinary differential equations, in: Current Trends in Scientific Computing, eds. Z. Chen, R. Glowinski and K. Li, AMS Series in Contemporary Mathematics, Vol. 329 (Amer. Math. Soc., Providence, RI, 2003) pp. 43–50. Google Scholar
  8. [8]
    R. Frank and C.W. Ueberhuber, Iterated defect correction for the efficient solution of stiff systems of ordinary differential equations, BIT 17 (1977) 146–159. CrossRefGoogle Scholar
  9. [9]
    R. Frank and C.W. Ueberhuber, Iterated defect correction for differential equations, part I: Theoretical results, Computing 20 (1978) 207–228. Google Scholar
  10. [10]
    E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential–Algebraic Problems, 2nd ed. (Springer, Berlin, 1996). Google Scholar
  11. [11]
    H.R. Schwarz, Numerische Mathematik (Teubner, Stuttgart, 1997). Google Scholar
  12. [12]
    H.J. Stetter, The defect correction principle and discretization methods, Numer. Math. 29 (1978) 425–443. CrossRefGoogle Scholar
  13. [13]
    H.J. Stetter, Personal communication. Google Scholar
  14. [14]
    P. Zadunaisky, On the estimation of errors propagated in the numerical integration of ODEs, Numer. Math. 27 (1976) 21–39. CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • W. Auzinger
    • 1
  • H. Hofstätter
    • 1
  • W. Kreuzer
    • 1
  • E. Weinmüller
    • 1
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyWienAustria, EU

Personalised recommendations