Nonlinear Oscillations

, Volume 14, Issue 4, pp 512–525 | Cite as

Asymptotic nonlinear multimodal modeling of liquid sloshing in an upright circular cylindrical tank. I. Modal equations

  • I. Lukovsky
  • D. Ovchynnykov
  • A. Timokha
Article

Combining the Lukovsky–Miles variational method and the Narimanov–Moiseev asymptotics, we deduce a nonlinear modal system describing the resonant liquid sloshing in an upright circular cylindrical tank. The sloshing occurs due to a small-amplitude periodic or an almost-periodic excitation with forcing frequency close to the lowest natural sloshing frequency. In contrast to the existing nonlinear modal systems based on the Narimanov–Moiseev asymptotic intermodal relations, the derived modal equations (i) contain all necessary (infinitely many) generalized coordinates of the second and third orders and (ii) include exclusively nonzero hydrodynamic coefficients, for which (iii) fairly simple computational formulas are found. As a consequence, the modal equations can be used in analytical studies of nonlinear sloshing phenomena, which will be demonstrated in the forthcoming Part II.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bateman, Partial Differential Equations of Mathematical Physics, Dover (1944).Google Scholar
  2. 2.
    K. Beyer, M. Guenther, I. Gawrilyuk, I. Lukovsky, and A. Timokha, “Compressible potential flows with free boundaries. Part I: Vibrocapillary equilibria,” Z. Angew. Math. Mech., 81, No. 4, 261–271 (2001).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    A. D. D. Craik, “The origins of water wave theory,” Ann. Rev. Fluid Mech., 36, 1–28 (2004).MathSciNetCrossRefGoogle Scholar
  4. 4.
    F. T. Dodge, D. D. Kana, and H. N. Abramson, “Liquid surface oscillations in longitudinally excited rigid cylindrical containers,” AIAA J., 3, 685–695 (1965).MATHCrossRefGoogle Scholar
  5. 5.
    O. M. Faltinsen, “A nonlinear theory of sloshing in rectangular tanks,” J. Ship. Res., 18, 224–241 (1974).Google Scholar
  6. 6.
    O. M. Faltinsen, O. F. Rognebakke, and A. N. Timokha, “Resonant three-dimensional nonlinear sloshing in a square base basin,” J. Fluid Mech., 487, 1–42 (2003).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    O. M. Faltinsen, O. F. Rognebakke, and A. N. Timokha, “Transient and steady-state amplitudes of resonant three-dimensional sloshing in a square base tank with a finite fluid depth,” Phys. Fluids, 18, Art. No. 012103 (2006).Google Scholar
  8. 8.
    O. M. Faltinsen and A. N. Timokha, Sloshing, Cambridge University Press (2009).Google Scholar
  9. 9.
    S. M. Gardarsson and H. Yeh, “Hysteresis in shallow water sloshing,” J. Eng. Mech., 133, 1093–1100 (2007).CrossRefGoogle Scholar
  10. 10.
    I. Gavrilyuk, I. Lukovsky, Yu. Trotsenko, and A. Timokha, “Sloshing in a vertical circular cylindrical tank with an annular baffle. Part 2. Nonlinear resonant waves,” J. Eng. Math., 57, 57–78 (2007).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    M. Hermann and A. Timokha, “Modal modelling of the nonlinear resonant sloshing in a rectangular tank. I: A single-dominant model,” Math. Models Meth. Appl. Sci., 15, 1431–1458 (2005).MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Hermann and A. Timokha, “Modal modelling of the nonlinear resonant fluid sloshing in a rectangular tank. II: Secondary resonance,” Math. Models Meth. Appl. Sci., 18, 1845–1867 (2008).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    R. Hargreaves, “A pressure-integral as kinetic potential,” Phil. Mag., 16, 436–444 (1908).Google Scholar
  14. 14.
    T. Ikeda and R. A. Ibrahim, “Nonlinear random responses of a structure parametrically coupled with liquid sloshing in a cylindrical tank,” J. Sound Vibr., 284, 75–102 (2005).CrossRefGoogle Scholar
  15. 15.
    M. La Rocca, G. Sciortino, and M. Boniforti, “A fully nonlinear model for sloshing in a rotating container,” Fluid Dyn. Res., 27, 23–52 (2000).MATHCrossRefGoogle Scholar
  16. 16.
    O. S. Limarchenko, “Variational-method investigation of problems of nonlinear dynamics of a reservoir with a liquid,” Sov. Appl. Mech., 16, No. 1, 74–79 (1980).MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    O. S. Limarchenko, “Application of a variational method to the solution of nonlinear problems of the dynamics of combined motions of a tank with fluid,” Sov. Appl. Mech., 19, No. 11, 1021–1025 (1983).CrossRefGoogle Scholar
  18. 18.
    O. S. Limarchenko, “Specific features of application of perturbation techniques in problems of nonlinear oscillations of a liquid with free surface in cavities of noncylindrical shape,” Ukr. Math. J., 59, No. 1, 45–69 (2007).MathSciNetCrossRefGoogle Scholar
  19. 19.
    I. A. Lukovsky, “Variational method in nonlinear problems of the dynamics of a limited liquid volume with free surface,” in: R. E. Lamper (editor), Oscillations of Elastic Constructions with Liquid [in Russian], Volna, Moscow (1976), pp. 260–264.Google Scholar
  20. 20.
    I. A. Lukovsky, Introduction to the Nonlinear Dynamics of a Solid Body with Cavities Containing a Liquid [in Russian], Naukova Dumka, Kiev (1990).Google Scholar
  21. 21.
    I. Lukovsky and D. Ovchynnykov, “Nonlinear mathematical model of the fifth order of smallness in problems of liquid sloshing in a cylindrical tank,” Proc. Inst. Math. Nat. Acad. Sci. Ukr., 47, 119–160 (2003).Google Scholar
  22. 22.
    I. Lukovsky and D. Ovchynnykov, “An optimal modal of the third order of smallness for the problem of nonlinear liquid sloshing in acylindrical tank,” Proc. Inst. Math. Nat. Acad. Sci. Ukr., 2, No. 1, 254–265 (2005).Google Scholar
  23. 23.
    I. A. Lukovsky, D. V. Ovchynnykov, and A. N. Timokha, “Algorithm and computer code for derivation of nonlinear modal systems describing liquid sloshing in a cylindrical tank,” Proc. Inst. Math. Nat. Acad. Sci. Ukr., 6, No. 3, 102–117 (2009).Google Scholar
  24. 24.
    I. A. Lukovskii and A. N. Timokha, “Bateman variational principle for a class of problems of dynamics and stability of surface waves,” Ukr. Math. J., 43, No. 9, 1106–1110 (1991).MathSciNetCrossRefGoogle Scholar
  25. 25.
    I. A. Lukovskii and A. N. Timokha, “Variational formulations of nonlinear boundary-value problems with a free boundary in the theory of interaction of surface waves with acoustic fields,” Ukr. Math. J., 45, No. 12, 1849–1860 (1993).MathSciNetCrossRefGoogle Scholar
  26. 26.
    I. A. Lukovsky and A. N. Timokha, “Asymptotic and variational methods in nonlinear problems on interaction of surface waves with acoustic field,” J. Appl. Math. Mech., 65, No. 3, 477–485 (2001).MathSciNetGoogle Scholar
  27. 27.
    I. A. Lukovsky and A. N. Timokha, “Combining Narimanov–Moiseev and Lukovsky–Miles schemes for nonlinear liquid sloshing,” J. Num. Appl. Math., 105, No. 2, 69–82 (2011).Google Scholar
  28. 28.
    J. C. Luke, “A variational principle for a fluid with a free surface,” J. Fluid Mech., 27, 395–397 (1967).MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    J. W. Miles, “Nonlinear surface waves in closed basins,” J. Fluid Mech., 75, 419–448 (1976).MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    J. W. Miles, “Internally resonant surface waves in a circular cylinder,” J. Fluid Mech., 149, 1–14 (1984).MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    J. W. Miles, “Resonantly forced surface waves in a circular cylinder,” J. Fluid Mech., 149, 15–31 (1984).MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    N. N. Moiseev, “On the theory of nonlinear vibrations of a liquid of finite volume,” J. Appl. Math. Mech., 22, 860–872 (1958).MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    R. E. Moore and L. M. Perko, “Inviscid fluid flow in an accelerating cylindrical container,” J. Fluid Mech., 22, 305–320 (1964).CrossRefGoogle Scholar
  34. 34.
    G. S. Narimanov, “Motion of a tank partially filled with liquid. Role of nonsmall motions of the liquid,” Prikl. Mat. Mekh., 21, 513–524 (1957).MathSciNetGoogle Scholar
  35. 35.
    G. S. Narimanov, L. V. Dokuchaev, and I. A. Lukovsky, Nonlinear Dynamics of an Aircraft with Liquid [in Russian], Mashinostroenie, Moscow (1977).Google Scholar
  36. 36.
    J. R. Ockendon and H. Ockendon, “Resonant surface waves,” J. Fluid Mech., 59, 397–413 (1973).MATHCrossRefGoogle Scholar
  37. 37.
    H. Ockendon, J. R. Ockendon, and A. D. Johnson, “Resonant sloshing in shallow water,” J. Fluid Mech., 167, 465–479 (1986).MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    L. M. Perko, “Large-amplitude motions of liquid-vapor interface in an accelerating container, J. Fluid Mech., 35, 77–96 (1969).MATHCrossRefGoogle Scholar
  39. 39.
    S. Rebouillat and D. Liksonov, “Fluid structure interaction in partially filled liquid containers: a comparative review of numerical approaches,” Comp. Fluids, 5, 739–746 (2010).CrossRefGoogle Scholar
  40. 40.
    D. D. Waterhouse, “Resonant sloshing near a critical depth,” J. Fluid Mech., 281, 313–318 (1994).MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    G. X. Wu, “Second-order resonance of sloshing in a tank,” Ocean Eng., 34, 2345–2349 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • I. Lukovsky
    • 1
  • D. Ovchynnykov
    • 1
  • A. Timokha
    • 1
  1. 1.KyivUkraine

Personalised recommendations