Skip to main content
Log in

An ergodic-averaging method to differentiate covariant Lyapunov vectors

Computing the curvature of one-dimensional unstable manifolds of strange attractors

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Covariant Lyapunov vectors or CLVs span the expanding and contracting directions of perturbations along trajectories in a chaotic dynamical system. Due to efficient algorithms to compute them that only utilize trajectory information, they have been widely applied across scientific disciplines, principally for sensitivity analysis and predictions under uncertainty. In this paper, we develop a numerical method to compute the directional derivatives of the first CLV along its own direction; the norm of this derivative is also the curvature of one-dimensional unstable manifolds. Similar to the computation of CLVs, the present method for their derivatives is iterative and analogously uses the second-order derivative of the chaotic map along trajectories, in addition to the Jacobian. We validate the new method on a super-contracting Smale–Williams Solenoid attractor. We also demonstrate the algorithm on several other examples including smoothly perturbed Arnold Cat maps, and the Lorenz’63 attractor, obtaining visualizations of the curvature of each attractor. Furthermore, we reveal a fundamental connection of the derivation of the CLV self-derivative computation with an efficient computation of linear response of chaotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abramov, R.V., Majda, A.J.: Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems. Nonlinearity 20(12), 2793–2821 (2007). https://doi.org/10.1088/0951-7715/20/12/004

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramov, R.V., Majda, A.J.: New approximations and tests of linear fluctuation-response for chaotic nonlinear forced-dissipative dynamical systems. J. Nonlinear Sci. 18(3), 303–341 (2008)

    Article  MathSciNet  Google Scholar 

  3. Arai, Z.: On hyperbolic plateaus of the hénon map. Exp. Math. 16(2), 181–188 (2007). https://doi.org/10.1080/10586458.2007.10128992

    Article  MATH  Google Scholar 

  4. Araújo, V., Melbourne, I., Varandas, P.: Rapid Mixing for the Lorenz Attractor and Statistical Limit Laws for Their Time-1 Maps. Commun. Math. Phys. 340(3), 901–938 (2015). https://doi.org/10.1007/s00220-015-2471-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, L.: The Multiplicative Ergodic Theorem on Bundles and Manifolds, pp. 163–199. Springer, Berlin (1998)

    Google Scholar 

  6. Beeson, R., Sri Namachchivaya, N.: Particle filtering for chaotic dynamical systems using future right-singular vectors. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05727-y

    Article  Google Scholar 

  7. Blonigan, P.J., Wang, Q., Nielsen, E.J., Diskin, B.: Least-squares shadowing sensitivity analysis of chaotic flow around a two-dimensional airfoil. AIAA J. 56(2), 658–672 (2018). https://doi.org/10.2514/1.J055389

    Article  Google Scholar 

  8. Cencini, M., Ginelli, F.: Lyapunov analysis: from dynamical systems theory to applications. J. Phys. A Math. Theor. (2013). https://doi.org/10.1088/1751-8113/46/25/250301

    Article  Google Scholar 

  9. Chandramoorthy, N.: nishachandramoorthy/s3: Differential clv method. 1.0.0 (2020). https://doi.org/10.5281/zenodo.3941678. https://doi.org/10.5281/zenodo.3941678

  10. Chandramoorthy, N., Fernandez, P., Talnikar, C., Wang, Q.: Feasibility analysis of ensemble sensitivity computation in turbulent flows. AIAA J. 57(10), 4514–4526 (2019). https://doi.org/10.2514/1.J058127

    Article  Google Scholar 

  11. Chandramoorthy, N., Magri, L., Wang, Q.: Variational optimization and data assimilation in chaotic time-delayed systems with automatic-differentiated shadowing sensitivity. arXiv e-prints arXiv:2011.08794 (2020)

  12. Chandramoorthy, N., Wang, Q.: Efficient computation of linear response of chaotic attractors with onedimensional unstable manifolds arXiv e-prints arXiv:2103.08816 (2021)

  13. Eyink, G., Haine, T., Lea, D.: Ruelle’s linear response formula, ensemble adjoint schemes and lévy flights. Nonlinearity 17, 1867 (2004). https://doi.org/10.1088/0951-7715/17/5/016

    Article  MathSciNet  MATH  Google Scholar 

  14. Ginelli, F., Chaté, H., Livi, R., Politi, A.: Covariant lyapunov vectors. J. Phys. A Math. Theor. (2013). https://doi.org/10.1088/1751-8113/46/25/254005

    Article  MATH  Google Scholar 

  15. Gouëzel, S., Liverani, C., et al.: Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. J. Differ. Geom. 79(3), 433–477 (2008). https://doi.org/10.4310/jdg/1213798184

    Article  MathSciNet  MATH  Google Scholar 

  16. Hasselblatt, B., Wilkinson, A.: Prevalence of non-Lipschitz Anosov foliations. Ergodic Theory Dyn. Syst. 19(3), 643–656 (1999). https://doi.org/10.1017/S0143385799133868

    Article  MathSciNet  MATH  Google Scholar 

  17. Hénon, M.: A Two-dimensional Mapping with a Strange Attractor, pp. 94–102. Springer, New York (2004)

    Google Scholar 

  18. Huhn, F., Magri, L.: Optimisation of chaotically perturbed acoustic limit cycles. Nonlinear Dyn. 100(2), 1641–1657 (2020). https://doi.org/10.1007/s11071-020-05582-x

    Article  Google Scholar 

  19. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  20. Kuptsov, P.V., Parlitz, U.: Theory and computation of covariant lyapunov vectors. J. Nonlinear Sci. 22(5), 727–762 (2012). https://doi.org/10.1007/s00332-012-9126-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Ledrappier, F., Young, L.S.: The metric entropy of diffeomorphisms: Part i: characterization of measures satisfying pesin’s entropy formula. Ann. Math. 122(3), 509–539 (1985)

    Article  MathSciNet  Google Scholar 

  22. Ledrappier, F., Young, L.S.: The metric entropy of diffeomorphisms: Part i: Characterization of measures satisfying pesin’s entropy formula. Annals of Mathematics pp. 509–539 (1985)

  23. Lucarini, V.: Response operators for markov processes in a finite state space: Radius of convergence and link to the response theory for axiom a systems. J. Stat. Phys. 162(2), 312–333 (2016). https://doi.org/10.1007/s10955-015-1409-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Lucarini, V., Sarno, S.: A statistical mechanical approach for the computation of the climatic response to general forcings. Nonlinear Process. Geophys. 18(1), 7–28 (2011). https://doi.org/10.5194/npg-18-7-2011

    Article  Google Scholar 

  25. Ni, A.: Hyperbolicity, shadowing directions and sensitivity analysis of a turbulent three-dimensional flow. J. Fluid Mech. 863, 644–669 (2019). https://doi.org/10.1017/jfm.2018.986

    Article  MathSciNet  MATH  Google Scholar 

  26. Ni, A.: Linear response algorithm for srb states. arXiv preprint arXiv:2009.00595 (2020)

  27. Ni, A., Wang, Q.: Sensitivity analysis on chaotic dynamical systems by non-intrusive least squares shadowing (nilss). J. Comput. Phys. 347, 56–77 (2017). https://doi.org/10.1016/j.jcp.2017.06.033

    Article  MathSciNet  MATH  Google Scholar 

  28. Noethen, F.: A projector-based convergence proof of the ginelli algorithm for covariant lyapunov vectors. Phys. D Nonlinear Phenom. 396, 18–34 (2019). https://doi.org/10.1016/j.physd.2019.02.012

    Article  MathSciNet  MATH  Google Scholar 

  29. Ragone, F., Lucarini, V., Lunkeit, F.: A new framework for climate sensitivity and prediction: a modelling perspective. Clim. Dyn. 46, 1459–1471 (2016). https://doi.org/10.1007/s00382-015-2657-3

    Article  Google Scholar 

  30. Ruelle, D.: Differentiation of srb states. Commun. Math. Phys. 187, 227–241 (1997). https://doi.org/10.1007/s002200050134

    Article  MathSciNet  MATH  Google Scholar 

  31. Ruelle, D.: Differentiation of srb states: correction and complements. Commun. Math. Phys. 234, 185–190 (2003). https://doi.org/10.1007/s00220-002-0779-z

    Article  MATH  Google Scholar 

  32. Slipantschuk, J., Bandtlow, O.F., Just, W.: Complete spectral data for analytic Anosov maps of the torus. Nonlinearity 30(7), 2667–2686 (2017). https://doi.org/10.1088/1361-6544/aa700f

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Q., Hu, R., Blonigan, P.: Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations. J. Comput. Phys. 267, 210–224 (2014). https://doi.org/10.1016/j.jcp.2014.03.002

    Article  MathSciNet  MATH  Google Scholar 

  34. Wormell, C., Gottwald, G.: On the validity of linear response theory in high-dimensional deterministic dynamical systems. J. Stat. Phys. 172, 1479–1498 (2018). https://doi.org/10.1007/s10955-018-2106-x

    Article  MathSciNet  MATH  Google Scholar 

  35. Young, L.S.: What are srb measures, and which dynamical systems have them? J. Stat. Phys. 108, 733–754 (2002). https://doi.org/10.1023/A:1019762724717

    Article  MathSciNet  MATH  Google Scholar 

  36. Śliwiak, A.A., Chandramoorthy, N., Wang, Q.: Ergodic sensitivity analysis of one-dimensional chaotic maps. Theor. Appl. Mech. Lett. 10(6), 438–447 (2020). https://doi.org/10.1016/j.taml.2020.01.058

    Article  Google Scholar 

Download references

Acknowledgements

We offer our sincere thanks to Dr. Jizhou Li and anonymous reviewers for helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Chandramoorthy.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A The lack of differentiability of CLVs

In general, we say that a subspace E is Hölder continuous on \({\mathbb {M}}\) if there exist constants \(K,\delta > 0\) and \(\beta \in (0,1]\) such that \(\left\Vert E_x - E_y \right\Vert _* \le K \left\Vert x - y \right\Vert ^\beta ,\) whenever \(x,y \in {\mathbb {M}}\) are such that \(\left\Vert x-y \right\Vert \le \beta .\) As mentioned in Sect. 2.4, the subspaces \(E^u\), \(E^s\) are Hölder continuous spaces with an \(\beta \) that is rarely equal to 1. The reader is referred to classical texts such as [19] (Chapter 19) or [16] for a detailed exposition on Hölder structures on hyperbolic sets.

There, the norm \(\left\Vert \cdot \right\Vert _*\) uses an adapted coordinate system such as the one introduced in Sect. 3.1. The set of Hölder continuous functions themselves is independent of the coordinate system, however. The norm \(\left\Vert \cdot \right\Vert _*\) used in the above references (e.g., in Theorem 19.1.6 of [19]), for our particular choice of adapted coordinates introduced in 3.1, results in the following definitions, which are exactly what one might expect. Suppose \(\left\Vert x-y \right\Vert \le \delta \), and \(Q_x, Q_y\) are matrix representations of the CLV basis whose ith columns, respectively, are \(V^i_x, V^i_y\). Then, \(\left\Vert E^u_x - E^u_y \right\Vert _* := \left\Vert Q_x[:,1:d_u] - Q_y[:,1:d_u] \right\Vert \) where the norm on the right-hand side is a matrix norm on \({\mathbb {R}}^{m\times d_u},\) say the induced 2-norm. Here, we have again used programmatic notation: given a matrix A, A[ : , i : j] refers to the columns of A from i to j, limits included. Similarly, for \(E^s\), \(\left\Vert E^s_x - E^s_y \right\Vert _* := \left\Vert Q_x[:,d_u+1:d] - Q_y[:,d_u+1:d] \right\Vert .\) Consistent with these definitions, for a one-dimensional \(E^i\), we have \(\left\Vert E^i_x - E^i_y \right\Vert := \left\Vert V^i_x - V^i_y \right\Vert ,\) which is simply the 2-norm on \({\mathbb {R}}^m.\)

1.2 B Computations on the super-contracting Solenoid attractor

The super-contracting Solenoid attractor is the curve \(\gamma :[0,2\pi ]\rightarrow {\mathbb {R}}^3\) (defined in Eq. 21) parameterized by a single parameter t. Since we have a closed form expression for the one-dimensional attractor, we can compute its tangent vector field, as:

$$\begin{aligned} \dfrac{d\gamma }{dt} = \begin{bmatrix} -2 r_1(t) \sin 2t -(\sin t \cos 2t)/2 \\ 2 r_1(t) \cos 2t - (\sin t\sin 2t)/2 \\ \dfrac{\cos t}{2} \end{bmatrix}, \end{aligned}$$
(34)

where

$$\begin{aligned} r_1(t) = \left( s_0 + \dfrac{\cos t}{2}\right) . \end{aligned}$$

As explained in Sect. 4.1, \(V^1(t) = \gamma '(t)/\left\Vert \gamma '(t) \right\Vert .\) Further, we analytically calculate that

$$\begin{aligned}&\partial _{\gamma '(t)/\Vert \gamma '(t)\Vert } \left( \gamma '(t)/\Vert \gamma '(t)\Vert \right) \nonumber \\&\quad =\dfrac{1}{2} \begin{bmatrix} -(193 \cos t + 392 \cos 2t + 267 \cos 3t + 68 \cos 4t + 6 \cos 5t + 36)/c_1 \\ -(189 \sin t + 392 \sin 2t + 267 \sin 3t + 68 \sin 4t + 6 \sin 5t)/c_1 \\ -(19 \sin t + 8\sin t \cos t + 2 \sin t \cos 2t - 2 \sin 2t \cos t)/(c_1/2) \end{bmatrix} \nonumber \\&\quad \begin{bmatrix} -\sin 2t/r_1&\cos 2t/r_1&0 \end{bmatrix} \; \dfrac{\gamma '(t)}{\left\Vert \gamma '(t) \right\Vert } \end{aligned}$$
(35)

where

$$\begin{aligned} c_1 := 2(16 \cos t + 2 \cos 2t + 19)^{3/2}. \end{aligned}$$

In Figs. 2and 3, we observe that the vector field \(W^1\) computed using the differential CLV method (Eq. 19), matches almost exactly against the above expression in Eq. 35.

1.3 C Convergence of the differential CLV method

In this section, we show that convergence of Eq. 19 is guaranteed when \(i=1\). Moreover, the asymptotic convergence is exponentially fast. Fix a reference trajectory \(q, q_1, \ldots , \), and use the notation \(f_n\) to denote \(f(x_n)\). Let \(W^i, W_1^i,\cdots \) and \({{\tilde{W}}}^i,{{\tilde{W}}}_1^i,\ldots \) be two sequences of vectors generated by iterating Eq. 19. Then, from Eq. 19,

$$\begin{aligned}&\left\Vert W_n^i - {{\tilde{W}}}_n^i \right\Vert = \dfrac{1}{\prod _{m=0}^{n-1}z_{m,i}^2}\nonumber \\&\quad \left\Vert \prod _{m=0}^{n-1} \Big ( (I - V^i_{m+1} (V^i_{m+1})^T)\, (d\varphi )_m \Big ) (W^i - {{\tilde{W}}}^i) \right\Vert . \end{aligned}$$
(36)

We can apply Oseledets MET to the cocycle \(\mathrm{Coc}(x_m,n) = \prod _{k=0}^{n-1}(I - V^i_{m+k+1} (V^i_{m+k+1})^T)(d\varphi )_{m+k},\) and to the Jacobian cocycle to obtain the following asymptotic inequality. In particular, using the relationship Eq. 6, we get that for every \(\epsilon > 0\), there exists an \(N \in {\mathbb {N}}\) such that for all \(n \ge N\),

$$\begin{aligned}&\left\Vert W_{n}^i - {{\tilde{W}}}_{n}^i \right\Vert =\nonumber \\ \dfrac{1}{\prod _{m=0}^{n-1}(z^i_m)^2}&\qquad \left\Vert \prod _{m=0}^{n-1} \Big ( (I - V^i_{m+1} (V^i_{m+1})^T)(d\varphi )_m \Big ) (W^i - {{\tilde{W}}}^i) \right\Vert \nonumber \\&\quad \le e^{-2n(\lambda _i - \epsilon )}\; e^{n(\omega _i + \epsilon )} \;\left\Vert W^i - {{\tilde{W}}}^i \right\Vert . \end{aligned}$$
(37)

In the above inequality 37, \(\omega _i := \max _{j\ne i,1\le j\le d_u} \lambda _j.\) Thus, asymptotic exponential convergence is guaranteed whenever \(2\lambda _i \ge \omega _i,\) which is of course true when \(i=1.\)

1.4 D Regularization of Ruelle’s formula

Here, we briefly describe the derivation of Eq. 32 from Ruelle’s formula (Eq. 31). The reader is referred to Ruelle’s original papers [30, 31], or to [12] for an alternative derivation of a regularized response to unstable perturbations. In the case of one-dimensional unstable manifolds, which is the focus of this paper, we can obtain Eq. 32 by the following sequence of steps:

  • Disintegration of the SRB measure on the unstable manifolds. Let \(\varXi \) be a partition of \({\mathbb {M}}\) subordinate to the unstable manifold [22], and let \(\rho _0\) be the conditional density of the SRB measure on elements of \(\varXi \). Then, disintegration results in the following expression for the (nth term in the) linear response to the unstable perturbation \(a V^1\),

    $$\begin{aligned}&\langle d(J\circ \varphi ^n) \cdot a\,V^1 , \mu _0 \rangle \nonumber \\&\quad = \int _{{\mathbb {M}}/\varXi } \int _{\varXi (x)} \Big ( d(J\circ \varphi ^n) \cdot a\, V^1 \Big )\nonumber \\&\qquad \circ {\mathcal {C}}_{x,1}(t)\, \rho _0\circ {\mathcal {C}}_{x,1}(t)\, dt \, d{\hat{\mu }}_0(x) \end{aligned}$$
    (38)
    $$\begin{aligned}&= \int _{{\mathbb {M}}/\varXi } \int _{\varXi (x)} a\circ {\mathcal {C}}_{x,1}(t) \, \dfrac{d(J\circ \varphi ^n\circ {\mathcal {C}}_{x,1})}{dt}(t)\, \rho _0\nonumber \\&\qquad \circ {\mathcal {C}}_{x,1}(t)\, dt \, d{\hat{\mu }}_0(x). \end{aligned}$$
    (39)

    In the above expression, \(\varXi (x)\) is the element of \(\varXi \) containing x, and the quotient measure of the SRB measure on \(M/\varXi \) is denoted \({\hat{\mu }}_0\).

  • Applying integration by parts on the inner integral, we obtain,

    $$\begin{aligned}&\langle d(J\circ \varphi ^n) \cdot a\,V^1 , \mu _0 \rangle \nonumber \\&= \int _{{\mathbb {M}}/\varXi } \int _{\varXi (x)} \dfrac{d\big ((a\, \rho _0\,J\circ \varphi ^n)\circ {\mathcal {C}}_{x,1}\big )}{dt}(t)\nonumber \\&\qquad dt \, d{\hat{\mu }}_0(x) \end{aligned}$$
    (40)
    $$\begin{aligned}&\quad - \int _{{\mathbb {M}}/\varXi } \int _{\varXi (x)} J\circ \varphi ^n\circ {\mathcal {C}}_{x,1}(t)\nonumber \\&\quad \Big ( \dfrac{a\circ {\mathcal {C}}_{x,1}(t)}{\rho _0\circ {\mathcal {C}}_{x,1}(t)} \dfrac{d (\rho _0\circ {\mathcal {C}}_{x,1})}{dt}(t) \end{aligned}$$
    (41)
    $$\begin{aligned}&\quad + \dfrac{d (a\circ {\mathcal {C}}_{x,1})}{dt}(t) \Big ) \rho _0\circ {\mathcal {C}}_{x,1}(t) \, dt\, d{\hat{\mu }}_0(x). \end{aligned}$$
    (42)

    The first term on the right-hand side of the above equation vanishes, as noted by Ruelle [30, 31] for arbitrary-dimensional unstable manifolds in Theorem 3.1(b). Applying the divergence theorem on the first term, we obtain integrals over boundaries of the partition elements, which incur cancellations in the outer integral.

  • Using the definitions of b and g in the above equation, we obtain

    $$\begin{aligned} \langle d(J\circ \varphi ^n) \cdot a\,V^1 , \mu _0 \rangle&= - \langle J\circ \varphi ^n \Big (a \, g + b \Big ), \mu _0\rangle . \end{aligned}$$
    (43)

    Eq. 32 is now obtained when we rewrite the above ensemble average as an ergodic average.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandramoorthy, N., Wang, Q. An ergodic-averaging method to differentiate covariant Lyapunov vectors. Nonlinear Dyn 104, 4083–4102 (2021). https://doi.org/10.1007/s11071-021-06478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06478-0

Keywords

Navigation