Skip to main content
Log in

Robust observer-based anti-swing control of 2D-crane systems with load hoisting-lowering

Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new model-free robust control scheme for payload swing angle attenuation of two-dimensional crane systems with varying rope length is introduced in this work. The proposed controller consists of a proportional derivative controller, a disturbance observer, and a compensation term that includes a coupling function. A proper design of the coupling function allows attenuating the magnitude of the swing angle, while the disturbance observer permits reducing the effect of internal and external disturbances. Then, a rigorous stability analysis demonstrates that the proposed controller allows the system to follow a desired translational motion and hoisting/lowering the load with small payload oscillations despite the adverse effects caused by internal and external disturbances. In the proposed scheme, a stage devoted to the design of the reference signal is also encompassed. The new methodology is compared to a robust controller and an adaptive scheme. Exhaustive numerical simulations demonstrate that the new controller’s performance outperforms the other control techniques, despite the presence of endogenous and exogenous disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Availability of data and material

Under request.

References

  1. Miranda-Colorado, R., Aguilar, L.T.: A family of anti-swing motion controllers for 2D-cranes with load hoisting/lowering. Mech. Syst. Signal Process. 133, 1–19 (2019)

    Article  Google Scholar 

  2. Chen, H., Xuan, B., Yang, P., Chen, H.: A new overhead crane emergency braking method with theoretical analysis and experimental verification. Nonlinear Dyn. 98, 2211–2225 (2019)

    Article  Google Scholar 

  3. Almutairi, N.B., Zribi, M.: Sliding mode control of a three-dimensional overhead crane. J. Vib. Control 15(11), 1679–1730 (2009)

    Article  MathSciNet  Google Scholar 

  4. Wu, X., He, X.: Partial feedback linearization control for 3-D underactuated overhead crane systems. ISA Trans. 65, 361–370 (2016)

    Article  Google Scholar 

  5. Chen, H., Fang, Y., Sun, N.: A payload swing suppression guaranteed emergency braking method for overhead crane systems. J. Vib. Control (2017). https://doi.org/10.1177/1077546317731967

    Article  Google Scholar 

  6. Sun, N., Yang, T., Fang, Y., Wu, Y., Chen, H.: Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1408–1418 (2019)

    Article  Google Scholar 

  7. Xing, X., Yang, H., Liu, J.: Vibration control for nonlinear overhead crane bridge subject to actuator failures and output constraints. Nonlinear Dyn. 101, 419–438 (2020)

    Article  Google Scholar 

  8. Ramly, L., Mohamed, Z., Abdullahi, A.M., Jaafar, H.I., Lazim, I.M.: Control strategies for crane systems: a comprehensive review. Mech. Syst. Signal Process. 95, 1–23 (2017)

    Article  Google Scholar 

  9. Wilbanks, J.J., Adams, C.J., Leamy, M.J.: Two-scale command shaping for feedforward control of nonlinear systems. Nonlinear Dyn. 92, 885–903 (2018)

    Article  Google Scholar 

  10. Abdullahi, A.M., Mohamed, Z., Selamat, H., Pota, H.R., Zainal Abidin, M.S., Fasih, S.M.: Efficient control of a 3D overhead crane with simultaneous payload hoisting and wind disturbance: design, simulation and experiment. Mech. Syst. Signal Process. 145, 1–16 (2020)

    Article  Google Scholar 

  11. Zhang, S., He, X., Chen, Q.: Energy coupled-dissipation control for 3-dimensional overhead cranes. Nonlinear Dyn. 99, 2097–2107 (2020)

    Article  Google Scholar 

  12. Maghsoudi, M.J., Ramli, L., Sudin, S., Mohamed, Z., Husain, A.R., Wahid, H.: Improved unity magnitude input shaping scheme for sway control of an underactuated 3D overhead crane with hoisting. Mech. Syst. Signal Process. 123, 466–482 (2019)

    Article  Google Scholar 

  13. Zhang, M., Zhang, Y., Chen, H., Cheng, X.: Model-independent PD-SMC method with payload swing suppression for 3D overhead crane systems. Mech. Syst. Signal Process. 129, 381–393 (2019)

    Article  Google Scholar 

  14. Urbás, A., Klosiński, J., Augustynek, K.: The influence of the PID controller settings on the motion of a truck-mounted crane with a flexible boom and friction in joints. Control Eng. Pract. 103, (2020)

  15. Rincon, L., Kubota, Y., Venture, G., Tagawa, Y.: Inverse dynamic control via “simulation of feedback control” by artificial neural networks for a crane system. Control Eng. Pract. 94, (2020)

  16. Li, F., Zhang, C., Sun, B.: A minimum-time motion online planning method for underactuated overhead crane systems. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2912460

    Article  Google Scholar 

  17. Gao, J., Wang, L., Gao, R., Huang, J.: Adaptive control of uncertain underactuated cranes with a non-recursive control scheme. J. Franklin Inst. 356(18), 11305–11317 (2019)

    Article  MathSciNet  Google Scholar 

  18. Ramli, L., Mohamed, Z., Jaafar, H.I.: A neural network-based input shaping for swing suppression of an overhead crane under payload hoisting and mass variations. Mech. Syst. Signal Process. 107, 484–501 (2018)

    Article  Google Scholar 

  19. Ramli, L., Mohamed, Z., Efe, M.O., Lazim, I.M., Jaafar, H.I.: Efficient swing control of an overhead crane with simultaneous payload hoisting and external disturbances. Mech. Syst. Signal Process. (2020). https://doi.org/10.1016/j.ymssp.2019.106326

    Article  Google Scholar 

  20. Zhu, Y., Niu, D., Li, Q., Chen, Y., Wei, S., Liu, J.: Anti-shake positioning algorithm of bridge crane based on phase plane analysis. IET J. Eng. 2019(22), 8370–8373 (2019). https://doi.org/10.1049/joe.2019.1083

    Article  Google Scholar 

  21. Shengzeng, Z., Xiongxiong, H., Haiyue, Z., Qiang, C., Yuanjing, F.: Partially saurated coupled-dissipation control for underactuated overhead cranes. Mech. Syst. Signal Process. (2020). https://doi.org/10.1016/j.ymssp.2019.106449

    Article  Google Scholar 

  22. Nguyen, V.T., Yang, C., Du, C., Liao, L.: Design and implement of finite time sliding mode controller for fuzzy overhead crane system. ISA Trans. (2019). https://doi.org/10.1016/j.isatra.2019.11.037

    Article  Google Scholar 

  23. Miranda-Colorado, R.: Finite-time sliding mode controller for perturbed second-order systems. ISA Trans. 95, 82–92 (2019)

    Article  Google Scholar 

  24. Wu, X., Xu, K., He, X.: Disturbance-observer-based nonlinear control for overhead cranes subject to uncertain disturbances. Mech. Syst. Signal Process. (2020). https://doi.org/10.1016/j.ymssp.2020.106631

    Article  Google Scholar 

  25. Wu, X., Xu, K., Lei, M., He, X.: Disturbance-compensation-based sontinuous sliding mode control for overhead cranes with disturbances. IEEE Trans. Autom. Sci. Eng. 17(4), 2182–2189 (2020)

    Article  Google Scholar 

  26. Zhang, M., Zhang, Y., Cheng, X.: Finite-time trajectory tracking control for overhead crane systems subject to unknown disturbances. IEEE Access 7, 55974–55982 (2019)

    Article  Google Scholar 

  27. Li, X., Peng, X., Geng, Z.: Anti-swing control for 2-D under-actuated cranes with load hoisting/lowering: a coupling-based approach. ISA Trans. 95, 372–378 (2019)

    Article  Google Scholar 

  28. Tuan, L.A.: Neural observer and adaptive fractional-order back-stepping fast terminal sliding mode control of RTG cranes. IEEE Trans. Industr. Electron. 68(1), 434–442 (2021)

    Article  Google Scholar 

  29. Ding, F., Huang, J., Wang, Y., Zhang, J., He, S.: Sliding mode control with an extended disturbance observer for a class of underactuated system. Nonlinear Dyn. 90, 2571–2582 (2017)

    Article  Google Scholar 

  30. Miranda-Colorado, R., Aguilar, L.T., Brito, J.E.H.: Reduction of power consumption on quadrotor vehicles via trajectory design and a controller-gains tuning stage. Aerosp. Sci. Technol. 78, 280–296 (2018)

    Article  Google Scholar 

  31. Tho, H.D., Kaneshige, A., Terashima, K.: Minimum-time S-curve commands for vibration-free transportation of an overhead crane with actuator limits. Control Eng. Pract. 98, (2020)

  32. Ouyang, H., Tian, Z., Yu, L., Zhang, G.: Load swing rejection for double-pendulum tower cranes using energy-shaping-based control with actuator output limitation. ISA Trans. 101, 246–255 (2020)

    Article  Google Scholar 

  33. Ouyang, H., Tian, Z., Yu, L., Zhang, G.: Motion planning approach for payload swing reduction in tower cranes with double-pendulum affect. J. Franklin Inst. (2020). https://doi.org/10.1016/j.jfranklin.2020.02.001

    Article  MATH  Google Scholar 

  34. Yang, T., Sun, N., Chen, H., Fang, Y.: Motion trajectory-based transportation control for 3-D boom cranes: Analysis, design, and experiments. IEEE Trans. Industr. Electron. 66(5), 3636–3646 (2019)

    Article  Google Scholar 

  35. Peng, H., Shi, B., Wang, X., Li, C.: Interval estimation and optimization for motion trajectory of overhead crane under uncertainty. Nonlinear Dyn. 96, 1693–1715 (2019)

    Article  Google Scholar 

  36. Miranda-Colorado, R.: Kinematics and Dynamics of Robot Manipulators (in Spanish), Alfaomega, ISBN: 978-607-622-048-1, (2016)

  37. Huang, J., Liang, Z., Zang, Q.: Dynamics and swing control of double pendulum bridge cranes with distributed-mass beams. Mech. Syst. Signal Process. 54–55, 357–366 (2015)

    Article  Google Scholar 

  38. Zhang, S., He, W., Li, G.: “Boundary control design for a flexible string system with input backslash”, 2016 American Control Conference (ACC), Boston, MA, August 6–8, (2016)

  39. He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66, 146–154 (2016)

    Article  MathSciNet  Google Scholar 

  40. Jaafar, H.I., Mohamed, Z., Shamsudin, M.A., Subha, N.A.M., Ramli, L., Abdullahi, A.M.: Model reference command shaping for vibration control of multimode flexible systems with application to a double-pendulum overhead crane. Mech. Syst. Signal Process. 115, 677–695 (2019)

    Article  Google Scholar 

  41. Rahn, C.D., Zhang, F., Joshi, S., Dawson, D.M.: Asymptotically stabilizing angle feedback for a flexible cable gantry crane. J. Dyn. Syst. Meas. Contr. 121(3), 563–566 (1999)

    Article  Google Scholar 

  42. Tuan, L.A., Lee, S.G.: Modeling and advanced sliding mode controls of crawler cranes considering wire rope elasticity and complicated operations. Mech. Syst. Signal Process. 103, 250–263 (2018)

    Article  Google Scholar 

  43. Park, J.H., Kim, S.H., Park, T.S.: Asymptotically convergent switching differentiator. Int. J. Adapt. Contr. Signal Process. 33, 557–566 (2019)

    Article  MathSciNet  Google Scholar 

  44. Ortega, R., Loría, A., Nicklasson, P.J., Sira-Ramírez, H.: Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications. Springer, London (1998). https://doi.org/10.1007/978-1-4471-3603-3

  45. Lee, H.H.: Motion planning for three-dimensional overhead cranes with high-speed load hoisting. Int. J. Control 78(12), 875–886 (2005)

    Article  MathSciNet  Google Scholar 

  46. Fang, Y., Ma, B., Wang, P., Zhang, X.: A motion planning-based adaptive control method for an underactuated crane system. IEEE Trans. Control Syst. Technol. 20(1), 241–248 (2012)

    Google Scholar 

  47. Sun, N., Fang, Y., Chen, H., He, B.: Adaptive nonlinear contol with load hoisting/lowering and unknown parameters: Design and experiments. IEEE/ASME Trans. Mechatron. 20, 2107–2119 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the valuable support provided by Lorena Ledón and the suggestions provided by Roger-Leonardo M.L. during the writing of this document.

Funding

The author gratefully acknowledges the financial support from CONACyT, Mexico (Consejo Nacional de Ciencia y Tecnología) under the project Cátedras CONACyT 1537.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Miranda-Colorado.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda-Colorado, R. Robust observer-based anti-swing control of 2D-crane systems with load hoisting-lowering. Nonlinear Dyn 104, 3581–3596 (2021). https://doi.org/10.1007/s11071-021-06443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06443-x

Keywords

Navigation