Nonlinear dynamics of higher-order rogue waves in a novel complex nonlinear wave equation

Original paper


A novel complex nonlinear wave equation was recently found by Mukherjee and Kundu (Phys. Lett. A 383:985–990, 2019) and shown that it possesses the first-order rogue waves and accelerated one-soliton solutions. In this paper, higher-order rogue wave solutions with multi-parameters of the novel complex nonlinear wave equation are derived by a symbolic computation approach. Nonlinear dynamics of the first- and second-order rogue wave solutions, localized in space–time and richer due to the presence of free parameters, are investigated in detail. In particular, a complete classification of the first-order rogue wave is given by the free parameters. With the help of the contour line method, some localization characters of the first-order rogue wave solution are analyzed. Moreover, the novel equation also allows some periodic wave and accelerated periodic wave solutions expressed by Jacobi elliptical functions.


Rogue wave solution Periodic wave solution Symbolic computation approach Novel complex nonlinear wave equation 



The authors deeply appreciate the anonymous reviewers for their helpful and constructive suggestions, which can help improve this paper further. This work is supported by the National Natural Science Foundation of China (under Grant Nos. 11861050, 11261037) and Caoyuan Yingcai Program of Inner Mongolia Autonomous Region (under Grant No. CYYC2011050).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)zbMATHCrossRefGoogle Scholar
  2. 2.
    Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in water wave tank. Phys. Rev. Lett. 106, 204502 (2011)CrossRefGoogle Scholar
  3. 3.
    Osborne, A.R.: Nonlinear Ocean Waves. Academic Press, New York (2009)Google Scholar
  4. 4.
    Kibler, B., Kibler, B., Fatome, J., Finot, C., et al.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)CrossRefGoogle Scholar
  5. 5.
    Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)CrossRefGoogle Scholar
  6. 6.
    Moslem, W.M., Shukla, P.K., Eliasson, B.: Surface plasma rogue waves. EPL 96, 25002 (2011)CrossRefGoogle Scholar
  7. 7.
    Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)CrossRefGoogle Scholar
  8. 8.
    Zhao, L.C.: Dynamics of nonautonomous rogue waves in Bose–Einstein condensate. Ann. Phys. 329, 73–79 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Yan, Z.Y.: Financial rogue waves. Commun. Theor. Phys. 54, 947–949 (2010)zbMATHCrossRefGoogle Scholar
  10. 10.
    Sharma, S.K., Bailung, H.: Observation of hole Peregrine soliton in a multicomponent plasma with critical density of negative ions. J. Geophys. Res. Space Phys. 118, 919–924 (2013)CrossRefGoogle Scholar
  11. 11.
    Kharif, C., Pelinovsky, E., Slunyaev, A.: Advances in Goephysical and Enviromental Mechnics and Mathematics. Springer, Berlin (2009)Google Scholar
  12. 12.
    Saucier, F.J., Chasse, J.: Tidal circulation and buoyancy effects in the St. Lawrence Estuary. Atmos. Ocean 38, 505–556 (2000)CrossRefGoogle Scholar
  13. 13.
    Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambrige (2004)zbMATHCrossRefGoogle Scholar
  14. 14.
    Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Soliton Theory and Its Geometric Applications. Shanghai Science and Technology Publishing House, Shanghai (2005)Google Scholar
  15. 15.
    Xu, S.W., He, J.S., Wang, L.H.: The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A Math. Theor. 44, 305203 (2011)zbMATHCrossRefGoogle Scholar
  16. 16.
    Zhaqilao, : \(N\text{ th }\)-order rogue wave solutions of the complex modified Korteweg–de Vries equation. Phys. Scr. 87, 065401 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhaqilao, : On \(N\text{ th }\)-order rogue wave solution to the generalized nonlinear Schrödinger equation. Phys. Lett. A 377, 855–859 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Nie, X.J., Zhaqilao, : Rogue wave solutions for the coupled cubic–quintic nonlinear Schrödinger equations in nonlinear optics. Phys. Lett. A 378, 191–197 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)zbMATHCrossRefGoogle Scholar
  20. 20.
    Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ohta, Y., Yang, J.K.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)CrossRefGoogle Scholar
  22. 22.
    Geng, X.G., Liu, H., Zhu, J.Y.: Initial-boundary value problems foe the coupled nonlinear Schrödinger equation on the half-line. Stud. Appl. Math. 135, 310–346 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy. Adv. Math. 263, 123–153 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Geng, X.G., Wu, J.P.: Riemann–Hilbert approach and N-soliton solutions for a generalized Sasa–Satsuma equation. Wave Motion 60, 62–72 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Wang, D.S., Yin, Y.B.: Symmetry analysis and reduction of the two-dimensional generalized Benney system via geometric approach. Comput. Math. Appl. 71, 748–757 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Wazwaz, A.M.: Abundant solutions of various physical features for the (2 + 1)-dimensional modified KdV–Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89, 1727–1732 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang, M.L., Zhou, Y.B., Li, Z.B.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)zbMATHCrossRefGoogle Scholar
  28. 28.
    Sirendaoreji, Sun J.: Auxiliary equation method for solving nonlinear partial differential equations. Phys. Lett. A 309, 387–396 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Wang, M.L., Zhou, Y.B.: The periodic wave solutions for the Klein–Gorden–Schrödinger equations. Phys. Lett. A 318, 84–92 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Wang, M.L., Li, X.Z.: Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations. Phys. Lett. A 343, 48–54 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Wang, M.L., Li, X.Z., Zhang, J.L.: The \(G^\prime /G\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, M.L., Zhang, J.L., Li, X.Z.: Application of the \(G^\prime /G\)-expansion to travelling wave solutions of the Broer–Kaup and the approximate long wave equations. Appl. Math. Comput. 206, 321–326 (2008)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Zhaqilao, : A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems. Comput. Math. Appl. 75, 3331–3342 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Bai, S., Zhaqilao, : Smooth soliton and kink solutions for a new integrable soliton equation. Nonlinear Dyn. 87, 377–382 (2017)zbMATHCrossRefGoogle Scholar
  36. 36.
    Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Beijing (2009)zbMATHCrossRefGoogle Scholar
  37. 37.
    Mukherjee, A., Kundu, A.: Novel nonlinear wave equation: regulated rogue waves and accelerated soliton solutions. Phys. Lett. A 383, 985–990 (2019)CrossRefGoogle Scholar
  38. 38.
    Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M., Dudley, John M.: Rogue wave early warning through spectral measurements? Phys. Lett. A 375, 541–544 (2011)zbMATHCrossRefGoogle Scholar
  39. 39.
    Nikolkina, I., Didenkulova, I.: Rogue waves in 2006–2010. Nat. Hazards Earth Syst. Sci. 11, 2913–2924 (2011)CrossRefGoogle Scholar
  40. 40.
    He, J.S., Wang, L.H., Li, L.J., Porsezian, K., Erdélyi, R.: Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation. Phys. Rev. E 89, 062917 (2014)CrossRefGoogle Scholar
  41. 41.
    Yuan, F., Qiu, D.Q., Liu, W., Porsezian, K., He, J.S.: On the evolution of a rogue wave along the orthogonal direction of the \((t, x)\)-plane. Commun. Nonlinear Sci. Numer. Simul. 44, 245–257 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.College of Mathematics ScienceInner Mongolia Normal UniversityHuhhotPeople’s Republic of China

Personalised recommendations