Advertisement

Control of the nonlinear dynamics of a truck and trailer combination

  • 36 Accesses

Abstract

The directional instability problem of a truck and trailer combination in a forward motion has been investigated by developing a dynamic model of the planar rigid-body dynamics of the system. Two control strategies have been devised based on the reference model following controller configuration. The main objective of the controllers is to ensure that the nonlinear model follows the desired response generated by a linearized version of the truck and trailer model. The first RFMC uses an integral-plus-state feedback controller for its compensator, which was designed based on the eigenstructure assignment methodology. The second RFMC relies on a sliding mode compensator. The control inputs were applied through the actuation of differential wheel torques. Different driving scenarios and road conditions, such as braking and accelerating maneuver with a flat tire on a dry road, and a double-lane change maneuver on a slippery road, were considered. Overall, the simulation results demonstrated the superiority of the sliding mode controller over the integral-plus-state feedback controller in ensuring better tracking of the truck and trailer combination to a target path under different driving maneuvers.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    World Health Organization: Health in 2015: from MDGs Millennium development goals to SDGs sustainable development goals. Technical Report (2015)

  2. 2.

    World Health Organization: Global status report on road safety. Technical Report (2018)

  3. 3.

    Khaled, N., Chalhoub, N.G.: A self-tuning guidance and control system for marine surface vessels. Nonlinear Dyn. 73(1–2), 897–906 (2013)

  4. 4.

    Chalhoub, N.G., Khaled, N.: Integrated controller-observer system for marine surface vessels. J. Vib. Control 20(3), 381–394 (2014)

  5. 5.

    Khaled, N., Chalhoub, N.G.: A self-tuning robust observer for marine surface vessels. Nonlinear Dyn. 79, 937–951 (2015)

  6. 6.

    Kang, X., Deng, W.: Truck-trailer handling dynamics and stability control—an engineering review. SAE Tech. Paper 2007-01-0822 (2007)

  7. 7.

    Khalaji, A.K., Moosavian, S.A.A.: Dynamic modeling and tracking control of a car with n trailers. Multibody Syst. Dyn. 37, 211–225 (2016)

  8. 8.

    Evestedt, N., Ljungqvist, O., Axehill, D.: Path tracking and stabilization for a reversing general 2-trailer configuration using a cascaded control approach. In: Proceedings of the 2016 IEEE Intelligent Vehicles Symposium, pp 1156–1161 (2016a)

  9. 9.

    Ljungqvist, O.: On motion planning and control for truck and trailer systems. Linköping studies in science and technology, Thesis No. 1832, Linköping University (2019)

  10. 10.

    Fancher, P., Winkler, C.: Directional performance issues in evaluation and design of articulated heavy trucks. Veh. Syst. Dyn. 45(7–8), 607–647 (2007)

  11. 11.

    Darling, J., Tilley, D., Gao, B.: An experimental investigation of car trailer high-speed stability. J. Automob. Eng. 223(4), 471–484 (2009)

  12. 12.

    Lukowski, S., Claar, P., Fiedler, R.: Steering behavior analysis of articulated truck with multi-wheel steering systems. SAE Tech. Paper 901660 (1990)

  13. 13.

    Fancher, P.: Directional dynamics considerations for multi-articulated, multi-axled heavy trucks. SAE Tech. Paper 892499 (1989)

  14. 14.

    Aurell, J., Edlund, S.: The influence of steered axles on the dynamic stability of heavy trucks. SAE Tech. Paper 892498 (1989)

  15. 15.

    Takas, D.: Dynamics of towed wheels–nonlinear theory and experiments. PhD dissertation. Budapest University of Technology and Economics, Hungary (2010)

  16. 16.

    Gillespie, T.D.: Fundamentals of Truck Dynamics. Society of Automotive Engineers, Warrendale (1992)

  17. 17.

    Wong, J.Y.: Theory of Ground Vehicles. Wiley, New York (2008)

  18. 18.

    Jazar, R.: Truck Dynamics: Theory and Applications. Springer, New York (2008)

  19. 19.

    Quingyun, W., Peng, W., Ning, C.: Dynamics modeling and simulation of trailer with compliance steering system. MATEC web of conferences, France (2017)

  20. 20.

    Abroshan, M., Taiebat, M., Goodarzi, A., Khajepour, A.: Automatic steering control in tractor semi-trailer vehicles for low-speed maneuverability enhancement. J. Multibody Dyn. 231(1), 83–102 (2017)

  21. 21.

    Saeedi, M.A., Kazemi, R., Azadi, Sh: A new robust controller to improve the lateral dynamic of an articulated vehicle carrying liquid. J. Multibody Dyn. 231(2), 295–315 (2017)

  22. 22.

    Leng, Z., Minor, M.A.: Curvature-based ground vehicle control of trailer path following considering sideslip and limited steering actuation. IEEE Trans. Intel. Transp. Syst. 18(2), 332–348 (2017)

  23. 23.

    Pacejka, H.: Tyre and Vehicle Dynamics. Butterworth-Heinemann, Oxford (2005)

  24. 24.

    Esterl, B., Butz, T.: Simulation of truck-trailer combinations by real-time capable DAE solvers. SAE Tech. Paper 2006-01-0802 (2006)

  25. 25.

    Wu, D., Lin, Y.: Directional response analysis of tractor-trailer with multi-axle-steering carrying liquid load. SAE Tech. Paper 2005-01-0415 (2005)

  26. 26.

    Zagorski, S., Guenther, D., Heydinger, G.: A study of jackknife stability of class VIII trucks with multiple trailers with abs disc/drum brakes. SAE Tech. Paper 2004-01-1741 (2004)

  27. 27.

    Sun, T., Lee, E., He, Y.: Nonlinear bifurcation stability analysis for articulated trucks with active trailer differential braking systems. SAE Int. J. Mater. Manf. 9(3), 688–698 (2016)

  28. 28.

    Ding, N., Shi, X., Zhang, Y., Chen, W.: Analysis of bifurcation and stability for a tractor semi-trailer in planar motion. Veh. Syst. Dyn. 52(12), 1729–1751 (2014)

  29. 29.

    Peng, T., Guan, Z., Zhang, R., Dong, J., Li, K., Xu, H.: Bifurcation of lane change and control on highway for tractor-semitrailer under rainy weather. J. Adv. Trans. 2017, 3506053 (2017). https://doi.org/10.1155/2017/3506053

  30. 30.

    Pylypchuk, V., Chen, S.K., Moshchuk, N., Litkouhi, B.: Slip-based holistic corner control. In: Proceedings of the ASME international mechanical engineering congress & exposition, Denver, Colorado, USA (2011)

  31. 31.

    Pylypchuk, V., Chen, S., Ghoneim, Y., Moshchuk, N., Litkouhi, B.: Tire force based holistic corner control. In: Proceedings of ASME International World Congress, Expo, pp. 133–140 Houston, TX, USA (2012)

  32. 32.

    Kasinathan, D., Kasaiezadeh, A., Wong, A., Khajepour, A., Chen, S., Litkouhi, B.: An optimal torque vectoring control for truck applications via real-time constraints. IEEE Trans. Veh. Technol. 65(6), 4368–4378 (2016)

  33. 33.

    Deo, A.S. Walker, I.D.: Robot subtask performance with singularity robustness using optimal damped least squares. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 434–441 (1992)

  34. 34.

    MacAdam, C., Hagan, M.: A simple differential brake control algorithm for attenuating rearward amplification in doubles and triples combination trucks. Veh. Syst. Dyn. 37(1), 234–245 (2002)

  35. 35.

    He, Y., Manjurul Islam, Md, Zhu, S., Hu, T.: A design synthesis framework for directional performance optimization of multi-trailer articulated heavy trucks with trailer lateral dynamic control systems. J. Automob. Eng. 231(8), 1096–1125 (2017)

  36. 36.

    Tabatabaei Oreh, S.H., Kazemi, R., Azadi, S.: A sliding-mode controller for directional control of articulated heavy trucks. J. Automob. Eng. 228(3), 245–262 (2014)

  37. 37.

    Tabatabaei Oreh, S.H., Kazemi, R., Azadi, S.: A new desired articulation angle for directional control of articulated trucks. J. Automob. Eng. 226(4), 298–314 (2012)

  38. 38.

    Kharrazi, S., Lidberg, M., Fredriksson, J.: A generic controller for improving lateral performance of heavy truck combinations. J. Automob. Eng. 225(5), 613–642 (2013)

  39. 39.

    Khalaji, A.K., Moosavian, S.A.A.: Robust adaptive controller for a tractor-trailer mobile robot. IEEE/ASME Trans. Mechatron. 19(3), 943–953 (2014)

  40. 40.

    Yue, M., Hou, X., Gao, R., Chen, J.: Trajectory tracking control for tractor–trailer vehicles: a coordinated control approach. Nonlinear Dyn. 91, 1061–1074 (2018)

  41. 41.

    Elbert, T.F.: Estimation and Control of Systems. Van Nostrand Reinhold, New York (1984)

  42. 42.

    Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, Upper Saddle River (1996)

  43. 43.

    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

  44. 44.

    Mohammadloo, S., Alizadeh, M.H., Jafari, M.: Multivariable autopilot design for sounding rockets using intelligent eigenstructure assignment technique. Int. J. Control Automat. Syst. 12(1), 208–219 (2014)

  45. 45.

    Beregi, S., Takács, D., Stépán, G.: Tyre induced vibrations of the car-trailer system. J. Sound Vib. 362, 214–227 (2016)

  46. 46.

    Pylypchuk, V., Chen, S., Moshchuk, N.: Tire force estimation with strain gauge measurement. In: Proceedings of the ASME International Mechanical Engineering Congress & Exposition. Montreal, Quebec, Canada, Paper No. IMECE2014-36762 (2014)

Download references

Author information

Correspondence to AmirReza Latif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Appendix A: Truck and trailer lateral tire forces

The formulation used in determining the lateral tire force of the truck is [30, 31]

$$\begin{aligned} F_{y} =F_{yV}^{\max } \sin [b_{{}V} \tanh \left( {c{}_{V} \alpha } \right) ] \end{aligned}$$
(A-1)

where

$$\begin{aligned} F_{yV}^{\max }= & {} 4359.62f_{z} -112.786f_{z}^{2} -14.3349f_{z}^{3}\\&\quad +\,1.27521f_{z}^{4} -5.59463\times 10^{-2}f_{z}^{5} \\ b_{V}= & {} 2.57769-9.42715\times 10^{-3}f_{z} \\&\quad -\,3.77976\times 10^{-4}f_{z}^{2} -1.68722\times 10^{-4}f_{z}^{3} \\&+\,2.29386\times 10^{-5}f_{z}^{4} -1.02129\times 10^{-6}f_{z}^{5} \\ c_{V}= & {} 0.10517+5.03038\times 10^{-2}f_{z} \\&\quad -\,4.44333\times 10^{-2}f_{z}^{2} +1.16291\times 10^{-2}f_{z}^{3} \\&\quad -\,2.73167\times 10^{-3}f_{z}^{4} +1.7083\times 10^{-4}f_{z}^{5} \\ f_{z}= & {} F_{z} /F_{z}^{\mathrm{nom}} \end{aligned}$$

Similarly, the formulation used in determining the lateral tire force of the trailer is:

$$\begin{aligned} F_{y} =F_{yT}^{\max } \sin \left( {b_\mathrm{T} \tanh \left( {c_\mathrm{T} \alpha } \right) } \right) \end{aligned}$$
(A-2)

where

$$\begin{aligned}&F_{yT}^{\max } =4471.74f_{z} -81.061f_{z}^{2} -8.45943f_{z}^{3}\\&\quad +\,0.62684f_{z}^{4} -2.32964\times 10^{-2}f_{z}^{5} \\&b_\mathrm{T} =2.69816-9.03815\times 10^{-3}f_{z} \\&\quad +\,8.11047\times 10^{-4}f_{z}^{2} -3.68044\times 10^{-4}f_{z}^{3} \\&\quad +\,4.61300\times 10^{-5}f_{z}^{4} -2.12143\times 10^{-6}f_{z}^{5} \\&c_\mathrm{T} = 0.15247-3.92322\times 10^{-2}f_{z} \\&\quad +\,1.97822\times 10^{-2}f_{z}^{2} -4.4911\times 10^{-3}f_{z}^{3} \\&+\,4.59281\times 10^{-4}f_{z}^{4} -1.7325\times 10^{-5}f_{z}^{5} \\&f_{z} =F_{z} /F_{z}^\mathrm{nom} \end{aligned}$$

Note that \(\alpha \) in both Eqs. (A-1) and (A-2) is expressed in degrees.

Appendix B: Linearized differential equation of motion

$$\begin{aligned}&A_{1} =\left[ {{\begin{array}{ccc} {a_{11} } &{}\quad {a_{12} } &{}\quad {a_{13} } \\ {a_{21} } &{}\quad {a_{22} } &{}\quad {a_{23} } \\ {a_{31} } &{}\quad {a_{32} } &{}\quad {a_{33} } \\ \end{array} }} \right] \nonumber \\&\quad \quad =\left[ {{\begin{array}{ccc} 1 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad {J_{zz} +h(c+h)\mu } &{}\quad {-ch\mu } \\ 0 &{}\quad {J_{zz} -I_{zz} +\left( {h^{2}-c^{2}} \right) \mu } &{}\quad {I_{zz} +c\left( {c-h} \right) \mu } \\ \end{array} }} \right] \nonumber \\ \end{aligned}$$
(B-1)
$$\begin{aligned}&B_{1} =\left[ {{\begin{array}{ccc} 0 &{}\quad 0 &{}\quad {-1} \\ {b_{21} } &{}\quad {b_{22} } &{}\quad {b_{23} } \\ {b_{31} } &{}\quad {b_{32} } &{}\quad {b_{33} } \\ \end{array} }} \right] \end{aligned}$$
(B-2)

where

$$\begin{aligned}&\mu =\frac{Mm}{m+M} \nonumber \\&b_{21} =-h\left( {\frac{\mu }{m}C_{\alpha _\mathrm{T} } +F_{x_\mathrm{T} } } \right) \nonumber \\&b_{22} =\frac{a^{2}C_{\alpha _\mathrm{f} } +b^{2}C_{\alpha _\mathrm{r} } +h(c+d+h)C_{\alpha _\mathrm{T} } }{V_{x} }\nonumber \\&\quad +\left( {\frac{aC_{\alpha _\mathrm{f} } -bC_{\alpha _\mathrm{r} } -(c+d+h)C_{\alpha _\mathrm{T} } }{V_{x} }} \right) \frac{\mu h}{M} \nonumber \\&b_{23} =-\frac{h(c+d)C_{\alpha _\mathrm{T} } }{V_{x} }\frac{\mu }{m} \nonumber \\&b_{31} =C_{\alpha _\mathrm{T} } \left( {c+d-h} \right) \nonumber \\&\quad -[C_{\alpha _\mathrm{T} } \left( {c-h} \right) +cF_{x_\mathrm{f} } ]\frac{\mu }{M}-hF_{x_\mathrm{T} } \nonumber \\&b_{32} =\frac{a^{2}C_{\alpha _\mathrm{f} } +b^{2}C_{\alpha _\mathrm{r} } +[h^{2}-\left( {c+d} \right) ^{2}]C_{\alpha _\mathrm{T} } }{V_{x} }\nonumber \\&\quad +\frac{aC_{\alpha _\mathrm{f} } -bC_{\alpha _\mathrm{r} } -\left( {c+d+h} \right) C_{\alpha _\mathrm{T} } }{V_{x} }\frac{\left( {h-c} \right) \mu }{M} \nonumber \\&b_{33} =\left( {\left( {h-c} \right) \frac{\mu }{M}+\left( {c+d-h} \right) } \right) \frac{(c+d)C_{\alpha _\mathrm{T} } }{V_{x} } \nonumber \\&C_{1} =\left[ {{\begin{array}{cc} 0 &{}\quad 0 \\ 1 &{}\quad 0 \\ 1 &{}\quad {-1} \\ \end{array} }} \right] \end{aligned}$$
(B-3)
$$\begin{aligned}&F_{1} =\left[ {{\begin{array}{c} 0 \\ {f_{21} } \\ {f_{31} } \\ \end{array} }} \right] \end{aligned}$$
(B-4)

where

$$\begin{aligned} f_{21}= & {} -\left( {aC_{\alpha _\mathrm{f} } +aF_{x_\mathrm{f} } +(C_{\alpha _\mathrm{f} } +F_{x_\mathrm{f} } )\frac{h\mu }{M}} \right) \delta _\mathrm{f} \\&+\left( aC_{\alpha _\mathrm{f} } -bC_{\alpha _\mathrm{r} } -hC_{\alpha _\mathrm{T} }\right. \\&\left. +(C_{\alpha _\mathrm{f} } +C_{\alpha _\mathrm{r} } +C_{\alpha _\mathrm{T} } )\frac{h\mu }{M} \right) \frac{V_{y} }{V_{x} } \\ f_{31}= & {} \left( {C_{\alpha _\mathrm{f} } \frac{\left( {c-h} \right) \mu }{M}-a} \right) (C_{\alpha _\mathrm{f} } +F_{x_\mathrm{f} } )\delta _\mathrm{f} \\&+\left( aC_{\alpha _\mathrm{f} } -bC_{\alpha _\mathrm{r} } +C_{\alpha _\mathrm{T} } \left( {c+d-h} \right) \right. \\&\left. -\left( {C_{\alpha _\mathrm{f} } +C_{\alpha _\mathrm{r} } +C_{\alpha _\mathrm{T} } } \right) \frac{\left( {c-h} \right) \mu }{M} \right) \frac{V_{y} }{V_{x} } \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Latif, A., Chalhoub, N. & Pilipchuk, V. Control of the nonlinear dynamics of a truck and trailer combination. Nonlinear Dyn (2020) doi:10.1007/s11071-019-05452-1

Download citation

Keywords

  • Truck–trailer stability
  • Nonlinear truck dynamics
  • Eigenstructure assignment
  • Sliding mode controller