Barrier Lyapunov functions-based fixed-time stabilization of nonholonomic systems with unmatched uncertainties and time-varying output constraints

  • 48 Accesses


The fixed-time stabilization problem is addressed in this paper for a kind of nonholonomic systems in chained form with unmatched uncertainties and time-varying output constraints. A novel tan-type barrier Lyapunov function is introduced to deal with time-varying output constraints. Under the unified framework of the considered system with and without output constraints, a state feedback controller is designed with the aid of adding a power integrator technique and switching control strategy. It is shown that the suggested controller ensures the states of closed-loop system to zero in a given fixed time without disobeying the constraints. Finally, simulation results are given to confirm the efficacy of the presented control scheme.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Roozegar, M., Ayati, M., Mahjoob, M.J.: Mathematical modelling and control of a nonholonomic spherical robot on a variable-slope inclined plane using terminal sliding mode control. Nonlinear Dyn. 90(2), 971–981 (2017)

  2. 2.

    Guo, J., Luo, Y., Li, K.: Adaptive neural-network sliding mode cascade architecture of longitudinal tracking control for unmanned vehicles. Nonlinear Dyn. 87(4), 2497–2510 (2017)

  3. 3.

    Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Brockett, R.W., Millman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181–195. Birkhauser, Boston (1983)

  4. 4.

    Astolfi, A.: Discontinuous control of nonholonomic systems. Syst. Control Lett. 27(1), 37–45 (1996)

  5. 5.

    Xu, W.L., Huo, W.: Variable structure exponential stabilization of chained systems based on the extended nonholonomic integrator. Syst. Control Lett. 41(4), 225–235 (2000)

  6. 6.

    Samson, C.: Control of chained system: application to path following and time-varying point-stabilization of mobile robots. IEEE Trans. Autom. Control 40(1), 64–77 (1995)

  7. 7.

    Tian, Y.P., Li, S.H.: Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control. Automatica 38(7), 1139–1146 (2002)

  8. 8.

    Yuan, H.L., Qu, Z.H.: Smooth time-varying pure feedback control for chained nonholonomic systems with exponential convergent rate. IET Control Theory Appl. 4(7), 1235–1244 (2010)

  9. 9.

    Prieur, C., Astolfi, A.: Robust stabilization of chained systems via hybrid control. IEEE Trans. Autom. Control 48(10), 1768–1772 (2003)

  10. 10.

    Jiang, Z.P.: Robust exponential regulation of nonholonomic systems with uncertainties. Automatica 36(2), 189–209 (2000)

  11. 11.

    Ge, S.S., Wang, Z.P., Lee, T.H.: Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. Automatica 39(8), 1451–1460 (2003)

  12. 12.

    Liu, Y.G., Zhang, J.F.: Output feedback adaptive stabilization control design for nonholonomic systems with strong nonlinear drifts. Int. J. Control 78(7), 474–490 (2005)

  13. 13.

    Xi, Z., Feng, G., Jiang, Z.P., Cheng, D.: Output feedback exponential stabilization of uncertain chained systems. J. Frankl. Inst. 344(1), 36–57 (2007)

  14. 14.

    Zheng, X., Wu, Y.: Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts. Nonlinear Anal. Theory Methods Appl. 70(2), 904–920 (2009)

  15. 15.

    Gao, F., Yuan, F., Yao, H.: Robust adaptive control for nonholonomic systems with nonlinear parameterization. Nonlinear Anal. Real World Appl. 11(4), 3242–3250 (2010)

  16. 16.

    Gao, F., Yuan, F., Yao, H., Mu, X.: Adaptive stabilization of high order nonholonomic systems with strong nonlinear drifts. Appl. Math. Model. 35(9), 4222–4233 (2011)

  17. 17.

    Wu, Y., Zhao, Y., Yu, J.: Global asymptotic stability controller of uncertain nonholonomic systems. J. Frankl. Inst. 350(5), 1248–1263 (2013)

  18. 18.

    Urakubo, T.: Feedback stabilization of a nonholonomic system with potential fields: application to a two-wheeled mobile robot among obstacles. Nonlinear Dyn. 81(3), 1475–1487 (2015)

  19. 19.

    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

  20. 20.

    Hong, Y., Wang, J., Xi, Z.: Stabilization of uncertain chained form systems within finite settling time. IEEE Trans. Autom. Control 50(9), 1379–1384 (2005)

  21. 21.

    Wang, J., Zhang, G., Li, H.: Adaptive control of uncertain nonholonomic systems in finite time. Kybernetika 45(5), 809–824 (2009)

  22. 22.

    Gao, F., Yuan, F.: Adaptive finite-time stabilization for a class of uncertain high order nonholonomic systems. ISA Trans. 55(1), 41–48 (2015)

  23. 23.

    Wu, Y., Gao, F., Liu, Z.: Finite-time state feedback stabilization of nonholonomic systems with low-order nonlinearities. IET Control Theory Appl. 9(10), 1553–1560 (2015)

  24. 24.

    Xie, X.J., Li, G.J.: Finite-time output-feedback stabilization of high-order nonholonomic systems. Int. J. Robust Nonlinear Control (2019).

  25. 25.

    Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control Optim. 47(4), 1814–1850 (2008)

  26. 26.

    Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

  27. 27.

    Tian, B., Lu, H., Zuo, Z., Wang, H.: Fixed-time stabilization of high-order integrator systems with mismatched disturbances. Nonlinear Dyn. 94(4), 2889–2899 (2018)

  28. 28.

    Zuo, Z., Han, Q.L., Ning, B., Ge, X., Zhang, X.M.: An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans. Ind. Inf. 14(6), 2322–2334 (2018)

  29. 29.

    Gao, F., Wu, Y., Zhang, Z., Liu, Y.: Global fixed-time stabilization for a class of switched nonlinear systems with general powers and its application. Nonlinear Anal. Hybrid Syst. 31, 56–68 (2019)

  30. 30.

    Gao, F., Wu, Y., Zhang, Z.: Global fixed-time stabilization of switched nonlinear systems: a time-varying scaling transformation approach. IEEE Trans. Circuits Syst. II Exp. Briefs 6611, 1890–1894 (2019)

  31. 31.

    Ni, J., Liu, L., Liu, C., Hu, X., Shen, T.: Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system. Nonlinear Dyn. 86(1), 401–420 (2016)

  32. 32.

    Defoort, M., Demesure, G., Zuo, Z., Polyakov, A., Djemai, M.: Fixed-time stabilisation and consensus of non-holonomic systems. IET Control Theory Appl. 10(18), 2497–2505 (2016)

  33. 33.

    Zhang, Z., Wu, Y.: Fixed-time regulation control of uncertain nonholonomic systems and its applications. Int. J. Control 90(7), 1327–1344 (2017)

  34. 34.

    Ni, J., Liu, L., He, W., Liu, C.: Adaptive dynamic surface neural network control for nonstrict-feedback uncertain nonlinear systems with constraints. Nonlinear Dyn. 94(1), 165–184 (2018)

  35. 35.

    Chang, W., Tong, S.: Adaptive fuzzy tracking control design for permanent magnet synchronous motors with output constraint. Nonlinear Dyn. 87(1), 291–302 (2017)

  36. 36.

    Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output constrained nonlinear systems. Automatica 45(2), 918–927 (2009)

  37. 37.

    Tee, K.P., Ren, B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 49(11), 2511–2516 (2011)

  38. 38.

    He, W., Huang, H., Ge, S.S.: Adaptive neural network control of a robotic manipulator with time-varying output constraints. IEEE Trans. Cybern. 47(10), 3136–3147 (2017)

  39. 39.

    Jin, X.: Adaptive fault tolerant tracking control for a class of stochastic nonlinear systems with output constraint and actuator faults. Syst. Control Lett. 107, 100–109 (2017)

  40. 40.

    Liu, Y., Ma, H., Ma, H.: Adaptive fuzzy fault-tolerant control for uncertain nonlinear switched stochastic systems with time-varying output constraints. IEEE Trans. Fuzzy Syst. 26(5), 2487–2498 (2018)

  41. 41.

    Liu, Y.J., Lu, S.M., Tong, S.C., Chen, X.K., Chen, C.L.P.: Adaptive control-based Barrier Lyapunov Functions for a class of stochastic nonlinear systems with full state constraints. Automatica 87, 83–93 (2018)

  42. 42.

    Ma, R.C., Jiang, B., Liu, Y.: Finite-time stabilization with output-constraints of a class of high order nonlinear systems. Int. J. Control Autom. Syst. 16(3), 945–952 (2018)

  43. 43.

    Ding, S., Mei, K., Li, S.: A new second-order sliding mode and its application to nonlinear constrained systems. IEEE Trans. Autom. Control 64(6), 2545–2552 (2018)

  44. 44.

    Chen, C.C.: A unified approach to finite-time stabilization of high-order nonlinear systems with and without an output constraint. Int. J. Robust Nonlinear Control 29(2), 393–407 (2019)

  45. 45.

    Chen, C.C., Sun, Z.Y.: A unified approach to finite-time stabilization of high-order nonlinear systems with an asymmetric output constraint. Automatica 111, 108581 (2020)

  46. 46.

    Ding, S., Park, J.H., Chen, C.C.: Second-order sliding mode controller design with output constraint. Automatica 112, 108704 (2020)

  47. 47.

    Wang, C., Wu, Y.: Finite-time tracking control for strict-feedback nonlinear systems with full state constraints. Int. J. Control 92(6), 1426–1433 (2019)

  48. 48.

    Sun, W., Sun, S.F., Wu, Y., Xia, J., Nguyen, V.T.: Adaptive fuzzy control with high-order Barrier Lyapunov Functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Trans. Cybern. (2019).

  49. 49.

    Sun, W., Sun, S.F., Dong, G., Bai, W.: Reduced adaptive fuzzy tracking control for high-order stochastic nonstrict feedback nonlinear system with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. (2019).

  50. 50.

    Gao, F., Wu, Y., Li, H., Liu, Y.: Finite-time stabilisation for a class of output-constrained nonholonomic systems with its application. Int. J. Syst. Sci. 49(10), 2155–2169 (2018)

  51. 51.

    Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

  52. 52.

    Ding, S., Chen, W.H., Mei, K., Murray-Smith, D.: Disturbance observer design for nonlinear systems represented by input–output models. IEEE Trans. Ind. Electr. 67(2), 1222–1232 (2020)

  53. 53.

    Yao, X., Wu, L., Guo, L.: Disturbance-observer-based fault tolerant control of high-speed trains: a Markovian jump system model approach. IEEE Trans. Syst. Man Cybern. Syst. (2019).

  54. 54.

    Yao, X., Park, J.H., Wu, L., Guo, L.: Disturbance-observer-based composite hierarchical anti-disturbance control for singular Markovian jump systems. IEEE Trans. Autom. Control 64(7), 2875–2882 (2019)

Download references


This work was partially supported by the National Natural Science Foundation of China under Grants 61873120, 61673243 and 61703232, the young teacher training plan of colleges and universities of Henan Province under Grant 2019GGJS192, the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant 18KJB510016, the High-level Talent Initial Funding of Nanjing Institute of Technology under Grant YKJ201824 and the Qing Lan project of Jiangsu Province.

Author information

Correspondence to Fangzheng Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Proof of (33)

Since \(0<r_{i}<1 \), by Lemma 2.4, one has

$$\begin{aligned} \displaystyle |x_{i}-x_{i}^{*}| \le 2^{1-r_{i}}\Big | [x_{i}]^{\frac{1}{r_{i}}}-[x_{i}^{*}]^{\frac{1}{r_{i}}}\Big |^{r_{i}}=2^{1-r_{i}}|\xi _{i}|^{r_{i}}.\nonumber \\ \end{aligned}$$

It can be directly deduced from (63) and Lemma 2.3 that

$$\begin{aligned} \displaystyle \lceil \xi _{i-1}\rceil ^{2-\tau -r_{i-1}}c_{0}^{*}(x_{i}-x_{i}^{*}) \le \frac{1}{3}|\xi _{i-1}|^{2}+|\xi _{i}|^{2}h_{i1}, \end{aligned}$$

where \(h_{i1} \ge 0\) is a smooth function. \(\square \)

Proof of (34)

From (6), (29) and Lemma 2.2, one has

$$\begin{aligned}&|{\varDelta }_{i}|\le \displaystyle {\bar{\varphi }}_{i}\sum \limits _{j=1}^{i}\left( |\xi _{j}|+\alpha _{j-1}^{\frac{1}{r_{j}}}|\xi _{j-1}|\right) ^{r_{i}+\tau } \nonumber \\&\quad \le \displaystyle {\tilde{\varphi }}_{i}\sum \limits _{j=1}^{i}|\xi _{j}|^{r_{i}+\tau }, \end{aligned}$$

where \({\bar{\varphi }}_{i}\) and \({\hat{\varphi }}_{i}\) are the nonnegative smooth functions.

Based on (65) and Lemma 2.3, one gets

$$\begin{aligned} \displaystyle [\xi _{i}]^{2-r_{i+1}}|{\varDelta }_{i} \displaystyle \le \frac{1}{3}\sum \limits _{j=1}^{i-1}|\xi _{j}|^{2}+|\xi _{i}|^{2}h_{i2}, \end{aligned}$$

where \(h_{i2}\ge 0\) is a smooth function. \(\square \)

Proof of (35)

Noting that

$$\begin{aligned} \displaystyle x_{2}^{*}=- \alpha _{1}\lceil \xi _{1}\rceil ^{r_{2}}, \end{aligned}$$

using the inductive argument, it is easily obtained that

$$\begin{aligned} \displaystyle \lceil x_{i}^{*}\rceil ^{\frac{1}{r_{i}}}=-\sum \limits _{l=1}^{i-1}B_{il}\lceil \xi _{l}\rceil ^{\frac{1}{r_{l}}}, \end{aligned}$$

for some nonnegative smooth functions \(B_{il}, l=1,\ldots ,i-1\).

Therefore, by (29), (65), (68) and Lemma 2.2, one has

$$\begin{aligned}&\displaystyle \sum \limits _{j=1}^{i-1}\frac{\partial W_{i}}{\partial x_{j}}(c_{0}^{*}x_{j+1}+{\varDelta }_{j}) \nonumber \\&\quad \displaystyle \le (2-r_{i+1})|\xi _{i}|^{1-r_{i+1}}|x_{i}-x_{i}^{*}| \nonumber \\&\qquad \displaystyle \times \sum \limits _{j=1}^{i-1}\left| \frac{\partial \left( \lceil x_{i}^{*}\rceil ^{\frac{1}{r_{i}}}\right) }{\partial x_{j}}\right| |c_{0}^{*}x_{j+1}+{\varDelta }_{j}| \nonumber \\&\quad \displaystyle \le \frac{1}{3}\sum \limits _{j=1}^{i-1}|\xi _{j}|^{2}+|\xi _{i}|^{2}h_{i3}, \end{aligned}$$

where \(h_{i3} \ge 0\) is a smooth function. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Gao, F., Huang, J. et al. Barrier Lyapunov functions-based fixed-time stabilization of nonholonomic systems with unmatched uncertainties and time-varying output constraints. Nonlinear Dyn (2020) doi:10.1007/s11071-019-05450-3

Download citation


  • Nonholonomic systems
  • Time-varying output constraints
  • Barrier Lyapunov function (BLF)
  • Adding a power integrator (API)
  • Fixed-time stabilization