Substructures’ coupling with nonlinear connecting elements

  • Francesco Latini
  • Jacopo Brunetti
  • Walter D’Ambrogio
  • Annalisa FregolentEmail author
Original paper


The analysis of complex structures is often very challenging since reliable data can only be obtained if the underlying model represents properly the real case. Thus, nonlinearities should be considered if their effect can significantly affect the results. In many cases, the relevant nonlinearity is concentrated on the junction between the components of the system (bolted joints, contacts, etc.). In this work, modal substructuring methods are used to get the behaviour of complex linear systems which are coupled through a nonlinear interface. This can be modelled as an additional substructure to be included in the substructuring process. The dynamic behaviour of the nonlinear connecting substructure is evaluated through the computation of its nonlinear normal modes. The proposed method is applied to lumped parameter systems connected by cubic springs as nonlinear elements. Two scenarios are analysed: the former considering a single nonlinear connection and the latter accounting for multipoint nonlinear connection, being more representative of real cases.


Substructuring Coupling Nonlinear connection Nonlinear normal modes 



This research is supported by University of Rome La Sapienza and University of L’Aquila.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hurty, W.: Dynamic analysis of structural systems using component modes. AIAA J 3(4), 678–685 (1965)CrossRefGoogle Scholar
  2. 2.
    Rubin, S.: Improved component-mode representation for structural dynamic analysis. AIAA J 13(8), 995–1006 (1975)CrossRefGoogle Scholar
  3. 3.
    Craig, R., Bampton, M.: Coupling of substructures for dynamic analysis. AIAA J 6(7), 1313–1319 (1968)CrossRefGoogle Scholar
  4. 4.
    de Klerk, D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review, and classification of techniques. AIAA J 46(5), 1169–1181 (2008)CrossRefGoogle Scholar
  5. 5.
    Kalaycioğlu, T., Özgüven, H. N.: Harmonic response of large engineering structures with nonlinear modifications. In: Proceedings of the 8th International Conference on Structural Dynamics, EURODYN, 2011, pp. 3623–3629Google Scholar
  6. 6.
    Kalaycıoğlu, T., Özgüven, H.N.: Nonlinear structural modification and nonlinear coupling. Mech. Syst. Signal Process. 46(2), 289–306 (2014)CrossRefGoogle Scholar
  7. 7.
    D’Ambrogio, W., Sestieri, A.: Using distributed modifications to change the dynamic behavior of structures,# 31, In: Proceedings of the 17th International Modal Analysis Conference, vol. 3727 (1999)Google Scholar
  8. 8.
    D’Ambrogio, W., Sestieri, A.: Coupling theoretical data and translational FRFs to perform distributed structural modification. Mech. Syst. Signal Process. 15(1), 157–172 (2001)CrossRefGoogle Scholar
  9. 9.
    Vetrone, L., Sestieri, A., D’Ambrogio, W.: Predicting the effect of distributed structural modifications by alternative techniques. In: Proceedings of IMAC-XIX: A Conference on Structural Dynamics: February 5–8, 2001, Hyatt Orlando, Kissimmee, Florida, vol. 1, Society for Experimental Mechanics (2001)Google Scholar
  10. 10.
    Chong, Y.H., Imregun, M.: Coupling of non-linear substructures using variable modal parameters. Mech. Syst. Signal Process. 14(5), 731–746 (2000)CrossRefGoogle Scholar
  11. 11.
    Kuether, R.J., Allen, M.S.: Nonlinear modal substructuring of systems with geometric nonlinearities. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2013)Google Scholar
  12. 12.
    Falco, M., Mahdiabadi, M.K., Rixen, D.J.: Nonlinear substructuring using fixed interface nonlinear normal modes. In: Dynamics of Coupled Structures, vol. 4, Springer, New York, pp. 205–213 (2017)CrossRefGoogle Scholar
  13. 13.
    Rosenberg, R.M.: The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech. 29(1), 7–14 (1962)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kerschen, G., Peeters, M., Golinval, J., Vakakis, A.F.: Nonlinear normal modes, Part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)CrossRefGoogle Scholar
  15. 15.
    Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.: Nonlinear normal modes. Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)CrossRefGoogle Scholar
  16. 16.
    Peeters, M., Kerschen, G., Golinval, J.-C., Stéphan, C., Lubrina, P.: Nonlinear normal modes of a full-scale aircraft. In: Modal Analysis Topics, vol. 3, pp. 223–242. Springer, New York (2011)Google Scholar
  17. 17.
    Sombroek, C.S.M., Tiso, P., Renson, L., Kerschen, G.: Numerical computation of nonlinear normal modes in a modal derivative subspace. Comput. Struct. 195, 34–46 (2018)CrossRefGoogle Scholar
  18. 18.
    Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems. Springer, New York (2019)CrossRefGoogle Scholar
  19. 19.
    Kuether, R.J., Allen, M.S.: Structural modification of nonlinear FEA subcomponents using nonlinear normal modes. In: Topics in Experimental Dynamic Substructuring, vol. 2, pp. 37–50. Springer, New York (2014)Google Scholar
  20. 20.
    Hollkamp, J.J., Gordon, R.W.: Reduced-order models for nonlinear response prediction: implicit condensation and expansion. J. Sound Vib. 318(4–5), 1139–1153 (2008)CrossRefGoogle Scholar
  21. 21.
    Castanier, M.P., Tan, Y.-C., Pierre, C.: Characteristic constraint modes for component mode synthesis. AIAA J. 39(6), 1182–1187 (2001)CrossRefGoogle Scholar
  22. 22.
    Kuether, R.J., Allen, M.S., Hollkamp, J.J.: Modal substructuring of geometrically nonlinear finite element models with interface reduction. AIAA J. 55(5), 1695–1706 (2017)CrossRefGoogle Scholar
  23. 23.
    Özgüven, H.N.: Structural modifications using frequency response functions. Mech. Syst. Signal Process. 4(1), 53–63 (1990)CrossRefGoogle Scholar
  24. 24.
    Peeters, M., Kerschen, G., Golinval, J.-C.: Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J. Sound Vib. 330(3), 486–509 (2011)CrossRefGoogle Scholar
  25. 25.
    Krack, M., Panning-von Scheidt, L., Wallaschek, J.: On the computation of the slow dynamics of nonlinear modes of mechanical systems. Mech. Syst. Signal Process. 42(1–2), 71–87 (2014)CrossRefGoogle Scholar
  26. 26.
    D’Ambrogio, W., Fregolent, A.: Decoupling procedures in the general framework of frequency based substructuring. In: Proceedings of 27th IMAC, Orlando (USA)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Industriale e dell’Informazione e di EconomiaUniversità dell’AquilaL’AquilaItaly
  2. 2.Dipartimento di Ingegneria Meccanica e AerospazialeUniversità di Roma La SapienzaRomeItaly

Personalised recommendations