Kinship-based differential evolution algorithm for unconstrained numerical optimization

  • Giovanni Formica
  • Franco MilicchioEmail author
Original paper


We propose a modification of the standard differential evolution (DE) algorithm in order to significantly make easier and more efficient standard DE implementations. Taking advantages from chaotic map approaches, recently proposed and successfully implemented for swarm intelligence-based algorithms, our DE improvement facilitates the search for the best population and then the optimal solution. More specifically, we work with a genetic memory that stores parents and grandparents of each individual (its kin) of the population generated by the DE algorithm. In this way, the new population is carried out not only on the basis of the best fitness of a certain individual, but also according to a good score of its kin. Additionally, we carried out a wide numerical campaign in order to assess the performances of our approach and validated the results with standard statistical techniques.


Optimization Differential evolution algorithm Chaotic maps 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Abbass, H.A.: An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif. Intell. Med. 25(3), 265–281 (2002)CrossRefGoogle Scholar
  2. 2.
    Alatas, B.: Chaotic bee colony algorithms for global numerical optimization. Expert Syst. Appl. 37(8), 5682–5687 (2010)CrossRefGoogle Scholar
  3. 3.
    Alatas, B.: Chaotic harmony search algorithms. Appl. Math. Comput. 216(9), 2687–2699 (2010)zbMATHGoogle Scholar
  4. 4.
    Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)zbMATHCrossRefGoogle Scholar
  5. 5.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)CrossRefGoogle Scholar
  6. 6.
    Brest, J., Maučec, M.S.: Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft. Comput. 15(11), 2157–2174 (2011)CrossRefGoogle Scholar
  7. 7.
    Brest, J., Zamuda, A. Boskovic, B., Maucec, M.S., Zumer, V.: Dynamic optimization using self-adaptive differential evolution. In: 2009 IEEE Congress on Evolutionary Computation, pp. 415–422 (2009)Google Scholar
  8. 8.
    Chatterjee, S., Roy, S., Das, A.K., Chattopadhyay, S., Kumar, N., Vasilakos, A.V.: Secure biometric-based authentication scheme using chebyshev chaotic map for multi-server environment. IEEE Trans. Dependable Secure Comput. 15, 824–839 (2018)CrossRefGoogle Scholar
  9. 9.
    Chauhan, N., Ravi, V., Chandra, D.K.: Differential evolution trained wavelet neural networks: application to bankruptcy prediction in banks. Expert Syst. Appl. 36(4), 7659–7665 (2009)CrossRefGoogle Scholar
  10. 10.
    Chen, D., Zou, F., Li, Z., Wang, J., Li, S.: An improved teaching–learning-based optimization algorithm for solving global optimization problem. Inf. Sci. 297, 171–190 (2015)CrossRefGoogle Scholar
  11. 11.
    Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution—an updated survey. Swarm Evolut. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  12. 12.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  13. 13.
    Farah, A., Belazi, A.: A novel chaotic Jaya algorithm for unconstrained numerical optimization. Nonlinear Dyn. 93(3), 1451–1480 (2018)CrossRefGoogle Scholar
  14. 14.
    Formica, G., Milicchio, F., Lacarbonara, W.: Hysteretic damping optimization in carbon nanotube nanocomposites. Compos. Struct. 194, 633–642 (2018)CrossRefGoogle Scholar
  15. 15.
    Gandomi, A.H., Yang, X.-S.: Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gandomi, A.H., Yang, X.-S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gokhale, S.S., Kale, V.S.: An application of a tent map initiated chaotic firefly algorithm for optimal overcurrent relay coordination. Int. J. Electr. Power Energy Syst. 78, 336–342 (2016)CrossRefGoogle Scholar
  18. 18.
    Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C., Gelbart, W.M., Suzuki, D.T., Miller, J.H., et al.: An Introduction to Genetic Analysis. Macmillan, New York (2005)Google Scholar
  19. 19.
    Hong, W.-C.: Traffic flow forecasting by seasonal svr with chaotic simulated annealing algorithm. Neurocomputing 74(12–13), 2096–2107 (2011)CrossRefGoogle Scholar
  20. 20.
    Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42, 482–500 (2012)CrossRefGoogle Scholar
  21. 21.
    Jia, D., Zheng, G., Khan, M.K.: An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 181(15), 3175–3187 (2011)CrossRefGoogle Scholar
  22. 22.
    Kiran, M.S., Findik, O.: A directed artificial bee colony algorithm. Appl. Soft Comput. 26, 454–462 (2015)CrossRefGoogle Scholar
  23. 23.
    Liao, T.W.: Two hybrid differential evolution algorithms for engineering design optimization. Appl. Soft Comput. 10(4), 1188–1199 (2010)CrossRefGoogle Scholar
  24. 24.
    Ma, Z.S.: Chaotic populations in genetic algorithms. Appl. Soft Comput. 12(8), 2409–2424 (2012)CrossRefGoogle Scholar
  25. 25.
    Majumdar, M., Mitra, T., Nishimura, K.: Optimization and Chaos, vol. 11. Springer, Berlin (2000)zbMATHCrossRefGoogle Scholar
  26. 26.
    Mavrovouniotis, M., Li, C., Yang, S.: A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evoluti. Comput. 33, 1–17 (2017)CrossRefGoogle Scholar
  27. 27.
    Mingjun, J., Huanwen, T.: Application of chaos in simulated annealing. Chaos Solitons Fractals 21(4), 933–941 (2004)zbMATHCrossRefGoogle Scholar
  28. 28.
    Mlakar, U., Brest, J., Fister, I.: A study of chaotic maps in differential evolution applied to gray-level image thresholding. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)Google Scholar
  29. 29.
    Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
  30. 30.
    Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24, 926–934 (2006)CrossRefGoogle Scholar
  31. 31.
    Peng, C., Sun, H., Guo, J., Liu, G.: Dynamic economic dispatch for wind-thermal power system using a novel bi-population chaotic differential evolution algorithm. Int. J. Electr. Power Energy Syst. 42(1), 119–126 (2012)CrossRefGoogle Scholar
  32. 32.
    Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785–1791 (2005)Google Scholar
  33. 33.
    Rao, R.V., Waghmare, G.G.: A new optimization algorithm for solving complex constrained design optimization problems. Eng. Optim. 49(1), 60–83 (2017)CrossRefGoogle Scholar
  34. 34.
    Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Saremi, S., Mirjalili, S., Lewis, A.: Biogeography-based optimisation with chaos. Neural Comput. Appl. 25(5), 1077–1097 (2014)CrossRefGoogle Scholar
  36. 36.
    Sarkar, S., Das, S., Chaudhuri, S.S.: Multilevel image thresholding based on Tsallis entropy and differential evolution. Lecture Notes in Computer Science, pp. 17–24 (2012)CrossRefGoogle Scholar
  37. 37.
    Senkerik, R., Pluhacek, M., Zelinka, I., Davendra, D., Janostik, J.: Preliminary study on the randomization and sequencing for the chaos embedded heuristic. In: AECIA (2015)Google Scholar
  38. 38.
    Senkerik, R., Pluhacek, M., Zelinka, I., Viktorin, A., Kominkova Oplatkova, Z.: Hybridization of multi-chaotic dynamics and adaptive control parameter adjusting jDE strategy. In: Matoušek, R. (ed.) Recent Advances in Soft Computing. ICSC-MENDEL 2016. Advances in Intelligent Systems and Computing, vol. 576. Springer, Cham (2017) CrossRefGoogle Scholar
  39. 39.
    Senkerik, R., Viktorin, A., Pluhacek, M., Kadavy, T., á Oplatková, Z.K.: Differential evolution and chaotic series, pp. 1–5 (2018)Google Scholar
  40. 40.
    Sprott, J.C.: Chaos and Time-Series Analysis, vol. 69. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  41. 41.
    Storn, R., Price, K.V.: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI, USA (1995)Google Scholar
  42. 42.
    Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Tanabe, R., Fukunaga, A.S.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp. 71–78 (2013)Google Scholar
  44. 44.
    Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665 (2014)Google Scholar
  45. 45.
    Tian, D., Shi, Z.: MPSO: modified particle swarm optimization and its applications. Swarm Evolut. Comput. 41, 49–68 (2018)CrossRefGoogle Scholar
  46. 46.
    Viktorin, A., Pluhacek, M., Senkerik, R.: Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4797–4803 (2016)Google Scholar
  47. 47.
    Viktorin, A., Hrabec, D., Pluhacek, M.: Multi-chaotic differential evolution for vehicle routing problem with profits. In: ECMS (2016)Google Scholar
  48. 48.
    Wang, X., Duan, H.: A hybrid biogeography-based optimization algorithm for job shop scheduling problem. Comput. Ind. Eng. 73, 96–114 (2014)CrossRefGoogle Scholar
  49. 49.
    Wong, I., Liu, W., Ho, C.-M., Ding, X.: Continuous adaptive population reduction (CAPR) for differential evolution optimization. SLAS Technol. 22(3), 289–305 (2017)Google Scholar
  50. 50.
    Yan, X.F., Chen, D.Z., Hu, S.X.: Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model. Comput. Chem. Eng. 27(10), 1393–1404 (2003)CrossRefGoogle Scholar
  51. 51.
    Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di ArchitetturaRoma Tre UniversityRomeItaly
  2. 2.Dipartimento di IngegneriaRoma Tre UniversityRomeItaly

Personalised recommendations