Advertisement

Sampled-data output voltage regulation for a DC–DC buck converter nonlinear system with actuator and sensor failures

  • Jing Zhang
  • Shi Li
  • Choon Ki AhnEmail author
  • Zhengrong XiangEmail author
Original paper
  • 52 Downloads

Abstract

This paper considers the regulation problem for a DC–DC buck converter nonlinear system with uncertain components and actuator and sensor failures. We establish a novel reduced-order observer to estimate the unmeasured state. Then, a new fault-tolerant sampled-data controller with an allowable sampling period is constructed to guarantee that the output voltage of the DC–DC buck converter nonlinear system can tend to the desired voltage. Finally, simulation results are presented to demonstrate the effectiveness of the proposed method.

Keywords

Fault-tolerant control Sampled-data control Reduced-order observer DC–DC buck converter Nonlinear system 

Notes

Funding

The funding was provided by National Natural Science Foundation of China (Grant No. 61873128).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Qian, Z., Rahman, A., Atrash, A.: Batarseh: modeling and control of three-tort DC/DC converter interface for satellite applications. IEEE Trans. Power Electron. 25, 637–649 (2010)CrossRefGoogle Scholar
  2. 2.
    Engel, S., Soltau, N., Stagge, H., De, D.: Dynamic and balanced control of three-phase high-power dual-active bridge DC–DC converters in DC-grid applications. IEEE Trans. Power Electron. 28, 1880–1889 (2013)CrossRefGoogle Scholar
  3. 3.
    Camara, M., Gualous, H., Gustin, F., Berthon, A., Dakyo, B.: DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications-polynomial control strategy. IEEE Trans. Ind. Electron. 57, 587–597 (2010)CrossRefGoogle Scholar
  4. 4.
    Olalla, C., Clement, D., Rodriguez, M., Maksimovic, D.: Architectures and control of submodule integrated DC–DC converters for photovoltaic applications. IEEE Trans. Power. Electron. 28, 2980–2997 (2013)CrossRefGoogle Scholar
  5. 5.
    Kim, S.K., Ahn, C.K.: Self-tuning proportional-type performance recovery property output voltage-tracking controller for DC/DC boost converter. IEEE Trans. Ind. Electron. 66(4), 3167–3175 (2019)CrossRefGoogle Scholar
  6. 6.
    Kim, S.K., Ahn, C.K.: Robust invariant manifold-based output voltage-tracking algorithm for DC/DC boost converter systems. IEEE Trans. Syst. Man Cybern. Syst. (2019).  https://doi.org/10.1109/TSMC.2019.2899152 CrossRefGoogle Scholar
  7. 7.
    Kim, S.K., Ahn, C.K.: Nonlinear tracking controller for DC/DC boost converter voltage control applications via energy-shaping and invariant dynamic surface approach. IEEE Trans. Circuits Syst. II Exp. Briefs (2019).  https://doi.org/10.1109/TCSII.2018.2890440 CrossRefGoogle Scholar
  8. 8.
    Middlebrook, R., Cuk, S.: A general unified approach to modelling switching-converter power stages. Proc. Power Electron. Spec. Conf. 1, 18–34 (1976)Google Scholar
  9. 9.
    Fang, C.: Instability conditions for a class of switched linear systems with switching delays based on sampled-data analysis: applications to DC-DC converters. Nonlinear Dyn. 77, 185–208 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Xu, Q., Zhang, C., Wen, C., Wang, P.: A Novel composite nonlinear controller for stabilization of constant power load in DC microgrid. IEEE Trans. Smart Grid. 10(1), 752–761 (2019)CrossRefGoogle Scholar
  11. 11.
    Du, H., Cheng, Y., He, Y., Jia, R.: Finite-time output feedback control for a class of second-order nonlinear systems with application to DC–DC buck converters. Nonlinear Dyn. 78, 2021–2030 (2014)CrossRefGoogle Scholar
  12. 12.
    Li, Z., Zhao, J.: Output feedback stabilization for a general class of nonlinear systems via sampled-data control. Int. J. Robust Nonlinear Control. 28, 2853–2867 (2018) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Salimi, M., Soltani, J., Markadeh, G., Abjadi, N.: Indirect output voltage regulation of DC–DC buck/boost converter operating in continuous and discontinuous conduction modes using adaptive backstepping approach. IEEE Trans. Power Electron. 6, 732–741 (2014)CrossRefGoogle Scholar
  14. 14.
    Wu, H., Pickert, V., Deng, X., Giaouris, D., Li, W., He, X.: Second-order sliding-mode controlled synchronous buck DC–DC converter. IEEE Trans. Power Electron. 31, 2539–2549 (2016)CrossRefGoogle Scholar
  15. 15.
    Qian, C., Du, H.: Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control. IEEE Trans. Autom. Control. 57, 2934–2938 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Du, H., Qian, C., Li, S., Chu, Z.: Global sampled-data output feedback stabilization for a class of uncertain nonlinear systems. Automatic 99, 403–411 (2019)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhai, J., Du, H., Fei, S.: Global sampled-data output feedback stabilisation for a class of nonlinear systems with unknown output function. Int. J. Control. 89, 469–480 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lan, Q., Li, S.: Global output-feedback stabilization for a class of stochastic nonlinear systems via sampled-data control. Int. J. Robust Nonlinear Control. 28, 3643–3658 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Du, H., Li, S., Qian, C., He, Y.: Global stabilization of a class of inherently nonlinear systems under sampled-data control. Acta Autom. Sin. 40, 379–384 (2014)Google Scholar
  20. 20.
    Jia, J., Chen, W., Dai, H.: Global stabilization of high-order nonlinear systems under multi-rate sampled-data control. Nonlinear Dyn. 94(4), 2441–2453 (2018)CrossRefGoogle Scholar
  21. 21.
    Qian, C., Du, H., Li, S.: Global stabilization via sampled-data output feedback for a class of linearly uncontrollable and unobservable systems. IEEE Trans. Autom. Control. 61, 4088–4093 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Du, H., Qian, C., Li, S.: Global stabilization of a class of uncertain upper-triangular systems under sampled-data control. Int. J. Robust Nonlinear Control. 23, 620–637 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, C., Yang, J.: Semi-global sampled-data output feedback disturbance rejection control for a class of uncertain nonlinear systems. Int. J. Syst. Sci. 48(4), 757–768 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhang, C., Jia, R., Qian, C., Li, S.: Semi-global stabilization via linear sampled-data output feedback for a class of uncertain nonlinear systems. Int. J. Robust Nonlinear Control. 25(13), 2041–2061 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chu, H., Qian, C., Liu, R., Di, L.: Global practical tracking of a class of nonlinear systems using linear sampled-data control. Int. J. Control. 88, 1851–1860 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wang, Z., Zhai, J., Ai, W., Fei, S.: Global practical tracking for a class of uncertain nonlinear systems via sampled-data control. Appl. Math. Comput. 260, 257–268 (2015)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Lin, W., Wei, W., Ye, G.: Global stabilization of a class of nonminimum-phase nonlinear systems by sampled-data output feedback. IEEE Trans. Autom. Control. 61, 3076–3082 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhang, D., Shen, Y.: Global output feedback sampled-data stabilization for upper-triangular nonlinear systems with improved maximum allowable transmission delay. Int. J. Robust Nonlinear Control. 27, 212–235 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu, W., Lim, C., Shi, P., Xu, S.: Sampled-data fuzzy control for a class of nonlinear systems with missing data and disturbances. Fuzzy Sets Syst. 306, 63–86 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    He, H., Gao, X., Qi, W.: Sampled-data control of asynchronously switched non-linear systems via T-S fuzzy model approach. IET Control Theory Appl. 11, 2817–2823 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, J., Li, H., Wu, H.: Fuzzy guaranteed cost sampled-data control of nonlinear systems coupled with a scalar reaction-diffusion process. Fuzzy Sets Syst. 302, 121–142 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ge, C., Wang, H., Liu, Y., Park, J.: Further results on stabilization of neural-network-based systems using sampled-data control. Nonlinear Dyn. 90, 2209–2219 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Huang, S., Cai, M., Xiang, Z.: Robust sampled-data H infinity control for offshore platforms subject to irregular wave forces and actuator saturation. Nonlinear Dyn. 88, 2705–2721 (2017)CrossRefGoogle Scholar
  34. 34.
    Song, P., Cui, C., Bai, Y.: Robust output voltage regulation for DC–DC buck converters under load variations via sampled-data sensorless control. IEEE Access. 6, 10688–10698 (2018)CrossRefGoogle Scholar
  35. 35.
    Zhang, C., Wang, J., Li, S., Wu, B., Qian, C.: Robust control for PWM-based DC–DC buck power converters with uncertainty via sampled-data output feedback. IEEE Trans. Power Electron. 30, 504–515 (2015)CrossRefGoogle Scholar
  36. 36.
    Guilbert, D., Guarisco, M., Gaillard, A., N’Diaye, A., Djerdir, A.: FPGA based fault-tolerant control on an interleaved DC/DC boost converter for fuel cell electric vehicle applications. Int. J. Hydrogen Energy. 40, 15815–15822 (2015)CrossRefGoogle Scholar
  37. 37.
    Hardy, G., Littlewood, J., Pslya, G.: Inequalities. Cambridge University Press, Cambridge (1952)Google Scholar
  38. 38.
    Apostol, T.: Mathematical Analysis, 2nd edn. Addison-Wesley, New Jersey (1974)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of AutomationNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Electrical EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations