Simplified global fault accommodation control design of uncertain nonlinear systems with unknown time-varying powers

  • Sung Jin YooEmail author
Original paper


This paper addresses the problem of global robust fault accommodation tracking for a class of uncertain nonlinear systems with unknown powers and actuator faults. It is assumed that the powers of the concerned system are unknown time-varying functions, all system nonlinearities are unknown, and unknown actuator faults depend on the time-varying power of a control input. A fault accommodation state-feedback controller is explicitly constructed based on the nonlinear error transformation technique using time-varying performance functions. Global tracking with the preselected performance bounds is established in the presence of unknown time-varying powers and unexpected actuator faults. Different from the previous results dealing with the problem of unknown time-varying powers, the proposed tracking strategy does not require the knowledge of the bounds of the time-varying powers and the nonlinear bounding functions of system nonlinearities. An underactuated mechanical system is simulated to validate the effectiveness of the proposed theoretical approach.


Global fault accommodation tracking Unexpected faults Unknown time-varying powers Low-complexity design Guaranteed tracking performance 



This research was supported by the Human Resources Development (No. 20174030201810) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy, and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2019R1A2C1004898).

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.


  1. 1.
    Rui, C., Reyhanoglu, M., Kolmanovsky, I., Cho, S., McClamroch, N.H.: Nonsmooth stabilization of an underactuated unstable two degrees of freedom mechanical system. In: Proceedings of 36th IEEE Conference on Decision Control, San Diego, CA, pp. 3998–4003 (1997)Google Scholar
  2. 2.
    Liu, J.Z., Yan, S., Zeng, D.L., Hu, Y., Lv, Y.: A dynamic model used for controller design of a coal fired once-through boiler-turbine unit. Energy 93, 2069–2078 (2015)CrossRefGoogle Scholar
  3. 3.
    Su, Z., Qian, C., Wang, W., Wang, Z.: Reduced-order observer and controller design for a 1000mw ultra-supercritical unit. In: 58th ISA POWID Symposium, Kansas, Missouri, USA, pp. 7–11 (2015)Google Scholar
  4. 4.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, Hoboken, NJ (1995)zbMATHGoogle Scholar
  5. 5.
    Qian, C.J., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46, 1061–1079 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Polendo, J., Qian, C.J.: A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback. Int. J. Robust Nonlinear Control 17, 605–629 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Li, W.Q., Xie, X.J., Zhang, S.Y.: Output-feedback stabilization of stochastic high-order nonlinear systems under weaker conditions. SIAM J. Control Optim. 49, 1262–1282 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fu, J., Ma, R.C., Chai, T.Y.: Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers. Automatica 54, 360–373 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Sun, Z.Y., Li, T., Yang, S.H.: A unified time-varying feedback approach and its applications in adaptive stabilization of high-order uncertain nonlinear systems. Automatica 70, 249–257 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Jia, J., Chen, W., Dai, H.: Global stabilization of high-order nonlinear systems under multi-rate sampled-data control. Nonlinear Dyn. 94, 2441–2453 (2018)zbMATHCrossRefGoogle Scholar
  11. 11.
    Sun, Z.Y., Yun, M.M., Li, T.: A new approach to fast global finite-time stabilization of high-order nonlinear system. Automatica 81, 455–463 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Sun, Z.Y., Dong, Y.Y., Chen, C.C.: Global fast finite-time partial state feedback stabilization of high-order nonlinear systems with dynamic uncertainties. Inf. Sci. 484, 219–236 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lin, W., Qian, C.: Robust regulation of a chain of power integrators perturbed by a lower-triangular vector field. Int. J. Robust Nonlinear Control 10(5), 397–421 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Liu, Z., Xue, L., Sun, W., Sun, Z.: Robust output feedback tracking control for a class of high-order time-delay nonlinear systems with input dead-zone and disturbances. Nonlinear Dyn. 97, 921–935 (2019)CrossRefGoogle Scholar
  15. 15.
    Lin, W., Qian, C.J.: Adaptive control of nonlinearly parameterized systems: the smooth feedback case. IEEE Trans. Autom. Control 47(8), 1249–1266 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lin, W., Pongvuthithum, R.: Nonsmooth adaptive stabilization of cascade systems with nonlinear parameterization via partial-state feedback. IEEE Trans. Autom. Control 48(10), 1809–1816 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Sun, Z.Y., Liu, Y.G.: Adaptive state-feedback stabilization for a class of high-order nonlinear uncertain systems. Automatica 43(10), 1772–1783 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Tian, J., Xie, X.J.: Adaptive state-feedback stabilization for high-order stochastic nonlinear systems with uncertain control coefficients. Int. J. Control 80(9), 1503–1516 (2007)zbMATHCrossRefGoogle Scholar
  19. 19.
    Zhang, J., Liu, Y.G.: A new approach to adaptive control design without overparametrization for a class of uncertain nonlinear systems. Sci. China Inf. Sci. 54(7), 1419–1429 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Xie, X.J., Tian, J.: Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica 45(1), 126–133 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Sun, Z.Y., Zhang, C.H., Wang, Z.: Adaptive disturbance attenuation for generailized high-order uncertain nonlinear systems. Automatica 80, 102–109 (2017)zbMATHCrossRefGoogle Scholar
  22. 22.
    Xu, X., Zhang, C., Liu, Q., Cao, J., Alsaedi, A.: Adaptive stabilization for a class of uncertain \(p\)-normal nonlinear systems via a generalized homogeneous domination technique. Nonlinear Dyn. 93, 847–862 (2018)zbMATHCrossRefGoogle Scholar
  23. 23.
    Sun, Z.Y., Shao, Y., Chen, C.C.: Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica 106, 339–348 (2019)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Qian, C., Lin, W.: Practical output tracking of nonlinear systems with uncontrollable unstable linearization. IEEE Trans. Autom. Control 47(1), 21–36 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lin, W., Pongvuthithum, R.: Adaptive output tracking of inherently nonlinear systems with nonlinear parameterization. IEEE Trans. Autom. Control 48(10), 1737–1749 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Sun, Z.Y., Liu, Y.G.: Adaptive practical output tracking control for highorder nonlinear uncertain systems. Acta Autom. Sin. 34(8), 984–989 (2008)CrossRefGoogle Scholar
  27. 27.
    Yan, X.H., Liu, Y.G.: Global practical tracking for high-order uncertain nonlinear systems with unknown control directions. SIAM J. Control Optim. 48(7), 4453–4473 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zhao, X., Shi, P., Zheng, X., Zhang, J.: Intelligent tracking control for a class of uncertain high-order nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1976–1982 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Cai, M., Xiang, Z., Guo, J.: Adaptive finite-time control for uncertain nonlinear systems with application to mechanical systems. Nonlinear Dyn. 84, 943–958 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Su, Z.G., Qian, C.J., Shen, J.: Interval homogeneity-based control for a class of nonlinear systems with unknown power drifts. IEEE Trans. Autom. Control 62(3), 1445–1450 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Chen, C.C., Qian, C.J., Lin, X.Z., Sun, Z.Y., Liang, Y.W.: Smooth output feedback stabilization for a class of nonlinear systems with time-varying powers. Int. J. Robust Nonlinear Control 27(18), 5113–5128 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Wang, M.Q., Liu, Y.G., Man, Y.C.: Switching adaptive controller for the nonlinear systems with uncertainties from unknown powers. IEEE Trans. Syst. Man Cybern. Syst. (2018). CrossRefGoogle Scholar
  33. 33.
    Man, Y., Liu, Y.: Global adaptive stabilization and practical tracking for nonlinear systems with unknown powers. Automatica 100, 171–181 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53, 2090–2099 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Bechlioulis, C.P., Rovithakis, G.A.: Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems. IEEE Trans. Autom. Control 55, 1220–1226 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Kostarigka, A.K., Rovithakis, G.A.: Adaptive dynamic output feedback neural network control of uncertain MIMO nonlinear systems with prescribed performance. IEEE Trans. Neural Netw. Learn. Syst. 23, 138–149 (2012)CrossRefGoogle Scholar
  37. 37.
    Bechlioulis, C.P., Rovithakis, G.A.: A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica 50, 1217–1226 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Theodorakopoulos, A., Rovithakis, G.A.: Guaranteeing preselected tracking quality for uncertain strict-feedback systems with deadzone input nonlinearity and disturbances via low-complexity control. Automatica 54, 135–145 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Lee, S.W., Yoo, S.J.: Robust approximation-free design for tracking and fault tolerance in the presence of arbitrarily switched unknown nonlinearities. J. Franklin Inst. 354(5), 2183–2198 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Lee, S.W., Yoo, S.J.: Robust fault-tolerant prescribed performance tracking for uncertain switched pure-feedback nonlinear systems under arbitrary switching. Int. J. Syst. Sci. 48(3), 578–586 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Choi, Y.H., Yoo, S.J.: Decentralized approximation-free control for uncertain large-scale pure-feedback systems with unknown time-delayed nonlinearities and control directions. Nonlinear Dyn. 85, 1053–1066 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Wei, C., Luo, J., Dai, H., Yin, Z., Yuan, J.: Low-complexity differentiator-based decentralized fault-tolerant control of uncertain large-scale nonlinear systems with unknown dead zone. Nonlinear Dyn. 89, 2573–2592 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Yoo, S.J.: A low-complexity design for distributed containment control of networked pure-feedback systems and its application to fault-tolerant control. Int. J. Robust Nonlinear Control 27(3), 363–379 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Yoo, S.J., Kim, T.H.: Predesignated fault-tolerant formation tracking quality for networked uncertain nonholonomic mobile robots in the presence of multiple faults. Automatica 77(3), 380–387 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Yoo, S.J.: Low-complexity robust tracking of high-order nonlinear systems with application to underactuated mechanical dynamics. Nonlinear Dyn. 91, 1627–1637 (2018)zbMATHCrossRefGoogle Scholar
  46. 46.
    Sun, Z.Y., Wang, M.: Disturbance attenuation via double-domination approach for feedforward nonlinear system with unknown output function. Nonlinear Dyn. 96, 2523–2533 (2019)CrossRefGoogle Scholar
  47. 47.
    Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ (1996)Google Scholar
  48. 48.
    Sontag, E.D.: Mathematical Control Theory. Springer, London (1998)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronics EngineeringChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations