Bifurcation of the collective oscillatory state in phase oscillators with heterogeneity coupling

  • Can Xu
  • Zhigang ZhengEmail author
Original paper


We study the dynamical transition to the oscillatory state in a system of phase oscillators by considering the coupling heterogeneity. The bifurcation mechanism of the oscillatory state in the neighborhood of the critical point is clarified on the basis of two-time-scale analysis, and a theory which is equivalent to Crawford’s amplitude expansion based on the central manifold reduction. In contrast to the steady-state bifurcation, the \(\mathscr {O}(2)\) symmetry, as well as the coupling scheme, denotes the properties of the eigenspectrum for the instability of the incoherence state, thereby determining the type for the emergence of the oscillatory state. We report that the bifurcation direction together with the stability of the oscillatory state can be changed by decreasing the noise strength or increasing the natural frequency heterogeneity. Theoretical predictions are consistent with numerical evidence, and our work provides another way for elucidating the dynamical phase transition in complex systems.


Synchronization Oscillatory state Bifurcation 



This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11905068, 11847013 and 11875135), the Scientific Research Funds of Huaqiao University (Grant No. 605-50Y17064).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wiesenfeld, K., Colet, P., Strogatz, S.H.: Synchronization transitions in a disordered Josephson series array. Phys. Rev. Lett. 76(3), 404 (1996)CrossRefGoogle Scholar
  2. 2.
    Wiesenfeld, K., Colet, P., Strogatz, S.H.: Frequency locking in Josephson arrays: connection with the Kuramoto model. Phys. Rev. E 57(2), 1563 (1998)CrossRefGoogle Scholar
  3. 3.
    Jiang, Z., McCall, M.: Numerical simulation of a large number of coupled lasers. JOSA B 10(1), 155–163 (1993)CrossRefGoogle Scholar
  4. 4.
    Kourtchatov, S.Y., Likhanskii, V.V., Napartovich, A.P., Arecchi, F.T., Lapucci, A.: Theory of phase locking of globally coupled laser arrays. Phys. Rev. A 52(5), 4089 (1995)CrossRefGoogle Scholar
  5. 5.
    Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109(6), 064101 (2012)CrossRefGoogle Scholar
  6. 6.
    Buzski, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304(5679), 1926–1929 (2004)CrossRefGoogle Scholar
  7. 7.
    Peskin, C.S.: Mathematical Aspects of Heart Physiology, pp. 268–278. Courant Institute of Mathematical Science Publication, New York (1975)zbMATHGoogle Scholar
  8. 8.
    Buck, J., Buck, E.: Synchronous fireflies. Sci. Am. 234(5), 74–85 (1976)CrossRefGoogle Scholar
  9. 9.
    Buck, J.: Synchronous rhythmic flashing of fireflies. II. Q. Rev. Biol. 63(3), 265–289 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  11. 11.
    Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. Hachette Books, New York (2003)Google Scholar
  12. 12.
    Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15 (1967)CrossRefGoogle Scholar
  13. 13.
    Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: International Symposium on Mathematical Problems in Theoretical Physics, pp. 420–422. Springer, Berlin (1975)Google Scholar
  14. 14.
    Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143, 1–20 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005)CrossRefGoogle Scholar
  16. 16.
    Ott, E., Antonsen, T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ott, E., Antonsen, T.M.: Long time evolution of phase oscillator systems. Chaos 19, 023117 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pikovsky, A., Rosenblum, M.: Partially integrable dynamics of hierarchical populations of coupled oscillators. Phys. Rev. Lett. 101, 264103 (2008)CrossRefGoogle Scholar
  19. 19.
    Pikovsky, A., Rosenblum, M.: Dynamics of globally coupled oscillators: progress and perspectives. Chaos 25, 097616 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pazó, D.: Thermodynamic limit of the first-order phase transition in the Kuramoto model. Phys. Rev. E 72, 046211 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gómez-Gardenes, J., Gómez, S., Arenas, A., Moreno, Y.: Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106(12), 128701 (2011)CrossRefGoogle Scholar
  22. 22.
    Zou, Y., Pereira, T., Small, M., Liu, Z., Kurths, J.: Basin of attraction determines hysteresis in explosive synchronization. Phys. Rev. Lett. 112(11), 114102 (2014)CrossRefGoogle Scholar
  23. 23.
    Ji, P., Peron, T.K.D.M., Menck, P.J., Rodrigues, F.A., Kurths, J.: Cluster explosive synchronization in complex networks. Phys. Rev. Lett. 110, 218701 (2013)CrossRefGoogle Scholar
  24. 24.
    Xu, C., Gao, J., Sun, Y., Huang, X., Zheng, Z.: Explosive or continuous: incoherent state determines the route to synchronization. Sci. Rep. 5, 12039 (2015)CrossRefGoogle Scholar
  25. 25.
    Zhang, X., Boccaletti, S., Guan, S., Liu, Z.: Explosive synchronization in adaptive and multilayer networks. Phys. Rev. Lett. 114, 038701 (2015)CrossRefGoogle Scholar
  26. 26.
    Xu, C., Sun, Y., Gao, J., Jia, W., Zheng, Z.: Phase transition in coupled star networks. Nonlinear Dyn. 10, 1007 (2018)Google Scholar
  27. 27.
    Xu, C., Gao, J., Boccaletti, S., Zheng, Z., Guan, S.: Synchronization in starlike networks of phase oscillators. Phys. Rev. E 100, 012212 (2019)CrossRefGoogle Scholar
  28. 28.
    Bi, H., Hu, X., Boccaletti, S., Wang, X., Zou, Y., Liu, Z., Guan, S.: Coexistence of quantized, time dependent, clusters in globally coupled oscillators. Phys. Rev. Lett. 117, 20410 (2016)CrossRefGoogle Scholar
  29. 29.
    Martens, E.A., et al.: Exact results for the Kuramoto model with a bimodal frequency distribution. Phys. Rev. E 79, 026204 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hong, H., Strogatz, S.H.: Mechanism of desynchronization in the finite-dimensional Kuramoto model. Phys. Rev. Lett. 106, 054102 (2011)CrossRefGoogle Scholar
  31. 31.
    Xu, C., Boccaletti, S., Guan, S., Zheng, Z.: Origin of Bellerophon states in globally coupled phase oscillators. Phys. Rev. E. 98, 050202(R) (2018)CrossRefGoogle Scholar
  32. 32.
    Bonilla, L.L., Neu, J.C., Spigler, R.: Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators. J. Stat. Phys. 67, 313–330 (1992)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Bonilla, L.L., Pérez Vicente, C.J., Spigler, R.: Asymptotic description of transients and synchronized states of globally coupled oscillators. Phys. D 114, 296–314 (1998)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Bonilla, L.L., Pérez Vicente, C.J., Spigler, R.: Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions. Phys. D 113, 79–97 (1998)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sakaguchi, H.: Cooperative phenomena in coupled oscillator systems under external fields. Prog. Theor. Phys. 79, 39–46 (1988)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Strogatz, S.H., Mirollo, R.E.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Crawford, J.D.: Amplitude expansions for instabilities in populations of globally-coupled oscillators. J. Stat. Phys. 74, 1047–1084 (1994)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Crawford, J.D.: Scaling and smgulantaes m the entrainment of globally coupled oscillators. Phys. Rev. Lett. 74, 4341–4344 (1995)CrossRefGoogle Scholar
  39. 39.
    Crawford, J.D., Davies, K.T.R.: Synchronization of globally coupled phase oscillators: singularities and scaling for general couplings. Phys. D 125, 1–46 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Systems Science and College of Information Science and EngineeringHuaqiao UniversityXiamenChina

Personalised recommendations