Advertisement

Practical realization of discrete-time Volterra series for high-order nonlinearities

  • Mohsen Annabestani
  • Nadia NaghaviEmail author
Original paper
  • 28 Downloads

Abstract

Full realization of all versions of Volterra series like pure, truncated, and doubly finite Volterra series, and especially, the realization of their high orders is an intractable problem. Hence, practical implementation of Volterra series for high-order nonlinearities is not feasible with reasonable computational cost. For this reason, mathematicians, neuroscientists, and especially, biomedical and electrical engineers are forced to use only the low-order Volterra series. In this paper, we provide a full realization of off-repetitive discrete-time Volterra series (ORDVS) by departure from a traditional approach in favor of choosing a hierarchical structure. The proposed method is named fast full tantamount of off-repetitive discrete-time Volterra series (FFT-ORDVS). We have proven that the proposed off-repetitive discrete-time Volterra series approximates the basic discrete-time Volterra series very well and with much less computational complexity. In a conventional method, if \({M} +1\) is considered as the memory length of the ORDVS, around \(2^{M}\) math operations are needed for the full realization of it. In most cases, M is a large number and consequently, \(2^{M}\) is too large. To solve this problem, we have proposed a simple polynomial time solution and using the proposed method, the same task is done only by 6M math operations. It means that we have found a shortcut to change an intractable problem (\({O}(2^{M}))\) to a simple P problem (O(M)). This achievement enables researchers to use high-order kernels and consequently covers high-order nonlinearities with the lowest possible computational load. We have proven our claims mathematically and validated the performance of the proposed method using two numerical examples and a real problem.

Keywords

Volterra series Volterra kernels Basis coefficients Hierarchical structure 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Financial support

The authors received no financial support for the research, authorship, and/or publication of this article.

References

  1. 1.
    Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2013)zbMATHGoogle Scholar
  2. 2.
    Steane, A.M.: Efficient fault-tolerant quantum computing. Nature 399, 124 (1999)CrossRefGoogle Scholar
  3. 3.
    Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)CrossRefGoogle Scholar
  4. 4.
    Kastner, M.A.: Prospects for quantum dot implementation of adiabatic quantum computers for intractable problems. Proc. IEEE 93(10), 1765–1771 (2005)CrossRefGoogle Scholar
  5. 5.
    Korenberg, M.J., Hunter, I.W.: The identification of nonlinear biological systems: volterra kernel approaches. Ann. Biomed. Eng. 24(2), 250–268 (1996)CrossRefGoogle Scholar
  6. 6.
    Valenza, G., Citi, L., Scilingo, E.P.: Point-process nonlinear models with Laguerre and Volterra expansions: instantaneous assessment of heartbeat dynamics. IEEE Trans. Signal Process. 61(11), 2914–2926 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fournier, J., Monier, C., Pananceau, M., Frégnac, Y.: Adaptation of the simple or complex nature of V1 receptive fields to visual statistics. Nat. Neurosci. 14(8), 1053 (2011)CrossRefGoogle Scholar
  8. 8.
    Song, D., Robinson, B.S., Granacki, J.J., Berger, T.W.: Implementing spiking neuron model and spike-timing-dependent plasticity with generalized Laguerre–Volterra models. presented at the 36th Annual international conference of the IEEE, Chicago (2014)Google Scholar
  9. 9.
    Jing, X., Simpsonb, D.M., Allenb, R., Newlandc, P.L.: Understanding neuronal systems in movement control using Wiener/Volterra kernels: a dominant feature analysis. J. Neurosci. Methods 203, 220–232 (2012)CrossRefGoogle Scholar
  10. 10.
    Song, D., Chan, R.H.M., Marmarelis, V.Z., Hampson, R.E., Deadwyler, S.A., Berger, T.W.: Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Netw. 22, 1340–1351 (2009)CrossRefGoogle Scholar
  11. 11.
    Scheibert, J., Leurent, S., Prevost, A., Debrégeas, G.: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2009)CrossRefGoogle Scholar
  12. 12.
    Cunningham, J., Lee, J., Subramanian, T., Almekkawy, M.: Transcranial enhanced Ultrasound Imaging of induced substantia nigra in brain using adaptive third order volterra filter: in-vivo results. In: 2017 IEEE 14th International symposium on biomedical imaging (ISBI 2017), pp. 684–687 (2017)Google Scholar
  13. 13.
    Hu, E.Y., Yu, G., Song, D., Bouteiller, C.J.-M., Berger, W.T.: Modeling nonlinear synaptic dynamics: a Laguerre–Volterra network framework for improved computational efficiency in large scale simulations. In: 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 6129–6132 (2018)Google Scholar
  14. 14.
    Liu, Y.-J., Chen, W., Zhou, J., Zhou, B.-H., Ghannouchi, F.M., Liu, Y.-N.: Modified least squares extraction for Volterra-series digital predistorter in the presence of feedback measurement errors. IEEE Trans. Microw. TheoryTech. 60(11), 3559–3570 (2012)CrossRefGoogle Scholar
  15. 15.
    Borys, A.: Consideration of Volterra series with excitation and/or impulse responses in the form of dirac impulses. IEEE Trans. Circuits Syst. I Express Briefs 57(6), 466–470 (2010)CrossRefGoogle Scholar
  16. 16.
    McRory, J.G., Johnson, R.: Volterra kernel estimation for mildly nonlinear amplifiers. Electron. Lett. 29(23), 2007–2008 (1993)CrossRefGoogle Scholar
  17. 17.
    Crespo-Cadenas, C., Reina-Tosina, J., Madero-Ayora, M.J., Allegue-Martínez, M.: A Volterra-based procedure for multi-port and multi-zone GaN FET amplifier CAD simulation. IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 3022–3032 (2013)CrossRefGoogle Scholar
  18. 18.
    Yu, H., El-Sankary, K., El-Masry, E.I.: Distortion analysis using Volterra series and linearization technique of nano-scale bulk-driven CMOS RF amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 62(1), 19–28 (2015)CrossRefGoogle Scholar
  19. 19.
    Chierchie, F., Aase, S.O.: Volterra models for digital PWM and their inverses. IEEE Trans. Circuits Syst. I Regul. Pap. 62(10), 2606–2616 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hao, R., Zhang, X., Gao, H., Cheng, J., Li, G.: A Volterra-series-based design technique for the bias circuit of class-AB RF power amplifier. In: 2018 2nd IEEE Advanced information management, communicates, electronic and automation control conference (IMCEC), pp. 54–57 (2018)Google Scholar
  21. 21.
    Mathews, V.J.: Orthogonalization of correlated Gaussian signals for Volterra system identification. IEEE Signal Process. Lett. 2(10), 188–190 (1995)CrossRefGoogle Scholar
  22. 22.
    Marmarelis, V.Z.: Nonlinear Dynamic Modeling of Physiological Systems. Wiley, New York (2004)CrossRefGoogle Scholar
  23. 23.
    Westwick, DavidT, Kearney, RobertE: Identification of Nonlinear Physiological Systems. IEEE Press, Piscataway (2005)Google Scholar
  24. 24.
    Wiener, N.: Nonlinear Problems in Random Theory. Wiley, New York (1958)zbMATHGoogle Scholar
  25. 25.
    Marmarelis, P.Z., Marmarelis, V.Z.: The white-noise method in system identification. In: Moore, G.P. (ed.) Analysis of physiological systems (Computers in biology and medicine), pp. 131–180. Springer (1978)Google Scholar
  26. 26.
    Greblicki, W.: Nonparametric identification of Wiener systems. IEEE Trans. Inf. Theory 38(5), 1487–1493 (1992)zbMATHCrossRefGoogle Scholar
  27. 27.
    Greblicki, W., Pawlak, M.: Nonparametric identification of Hammerstein systems. IEEE Trans. Inf. Theory 35(2), 409–418 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Lee, Y.W., Schetzen, M.: Measurement of the Wiener kernels of a non-linear system by cross-correlation. Int. J. Control 2, 237–254 (1965)CrossRefGoogle Scholar
  29. 29.
    Goussard, Y., Krenz, W.C., Stark, L.: An improvement of the Lee and Schetzen cross-correlation method. IEEE Trans. Autom. Control AC–30(9), 895–898 (1985)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Gautier, M., Monsion, M., Sagaspe, J.P.: Multidimensional Laguerre transform. IEEE Trans. Autom. Control 23(3), 488–489 (1978)zbMATHCrossRefGoogle Scholar
  31. 31.
    Korenberg, M.J.: Parallel cascade identification and kernel estimation for nonlinear systems. Ann. Biomed. Eng. 19, 429–45 (1991)CrossRefGoogle Scholar
  32. 32.
    Kibangou, A.Y., Favier, G.: Identification of parallel-cascade wiener systems using joint diagonalization of third-order Volterra kernel slices. IEEE Signal Process. Lett. 16(3), 188–191 (2009)CrossRefGoogle Scholar
  33. 33.
    Panicker, T.M., Mathews, V.J.: Parallel-cascade realizations and approximations of truncated Volterra systems. In: Acoustics, Speech, and Signal Processing, 1996. ICASSP-96, vol. 3, pp. 1589-1592 (1996)Google Scholar
  34. 34.
    Zoubir, A.M.: Identification of quadratic Volterra systems driven by non-Gaussian processes. IEEE Trans. Signal Process. 43(5), 1302–1306 (1995)zbMATHCrossRefGoogle Scholar
  35. 35.
    Ralston, J.C., Zoubir, A.M., Boashash, B.: Identification of a class of nonlinear systems under stationary non-Gaussian excitation. IEEE Trans. Signal Process. 45(3), 719–735 (1997)CrossRefGoogle Scholar
  36. 36.
    Marmarelis, V.Z., Zhao, X.: Volterra models and three-layer perceptrons. IEEE Trans. Neural Netw. 8(6), 1421–1433 (1997)CrossRefGoogle Scholar
  37. 37.
    Kun, C., Lixiong, L.: Volterra series-based neural network and its application in tap-water flow forecast. In: 4th International symposium on computational intelligence and design, pp. 97–100 (2011)Google Scholar
  38. 38.
    Yao, L.: Genetic algorithm based identification of nonlinear systems by sparse Volterra filters. IEEE Trans. Signal Process. 47(12), 3433–3435 (1999)zbMATHCrossRefGoogle Scholar
  39. 39.
    Chang, W.D.: Volterra filter modeling of nonlinear discrete-time system using improved particle swarm optimization. Digital Signal Process. 22, 1056–1062 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Korenberg, J.M.: Identification of biological cascades of linear and static nonlinear systems. In: Proceedings 16th midwest symposium circuit Theory, pp. 1–9 (1973)Google Scholar
  41. 41.
    Korenberg, M.J., Hunter, I.W.: The identification of nonlinear biological systems: LNL cascade models. Biol. Cybern. 55(2–3), 125–134 (1986)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Ogura, H.: Estimation of Wiener kernels of a nonlinear system and a fast algorithm using digital Laguerre filters. presented at the 15th NIBB conference, Okazaki (1985)Google Scholar
  43. 43.
    Marmarelis, V.: Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann. Biomed. Eng. 21, 573–589 (1993)CrossRefGoogle Scholar
  44. 44.
    Annabestani, M., Naghavi, N., Maymandi-Nejad, M.: Non-autoregressive nonlinear identification of IPMC in large deformation situations using generalized Volterra-based approach. IEEE Trans. Instrum. Meas. 65, 2866–2872 (2016)CrossRefGoogle Scholar
  45. 45.
    Annabestani, M., Naghavi, N.: Nonlinear identification of IPMC actuators based on ANFIS-NARX paradigm. Sens. Actuators A Phys. 209, 140–148 (2014)CrossRefGoogle Scholar
  46. 46.
    Shahinpoor, M., BarCohen, Y., Simpson, J.O., Smith, J.: Ionic polymer-metal composites (IPMC) as biomimetic sensors, actuators & artificial muscles–a review. J. Smart Mater. Struct. 7, R15–R30 (1998)CrossRefGoogle Scholar
  47. 47.
    Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: I. Fundamentals. Inst. Phys. Publ. J. Smart Mater. Struct. 10, 819–833 (2001)CrossRefGoogle Scholar
  48. 48.
    Annabestani, M., Naghavi, N.: Nonuniform deformation and curvature identification of ionic polymer metal composite actuators. J. Intell. Mater. Syst. Struct. 26, 582–598 (2014)CrossRefGoogle Scholar
  49. 49.
    Annabestani, M., Naghavi, N., Maymandi-Nejad, M.: From modeling to implementation of a method for restraining back relaxation in ipmc soft actuators. J. Intell. Mater. Syst. Struct. 29(15), 3124–3135 (2018)CrossRefGoogle Scholar
  50. 50.
    Annabestani, M., Maymandi-Nejad, M., Naghavi, N.: Restraining IPMC back relaxation in large bending displacements: applying non-feedback local Gaussian disturbance by patterned electrodes. IEEE Trans. Electron Devices 63(4), 1689–1695 (2016)CrossRefGoogle Scholar
  51. 51.
    Bonomo, C., Brunetto, P., Fortuna, F., Giannone, P., Graziani, S., Strazzeri, S.: A tactile sensor for biomedical applications based on IPMCs. IEEE Sens. J. 8(8), 1486–1493 (2008)CrossRefGoogle Scholar
  52. 52.
    Brunetto, P., Fortuna, L., Giannone, P., Graziani, S., Pagano, F.: A resonant vibrating tactile probe for biomedical applications based on IPMC. IEEE Trans. Instrum. Meas. 59(5), 1453–1462 (2010)CrossRefGoogle Scholar
  53. 53.
    Chang, Y.C., Kim, W.J.: Aquatic Ionic-polymer-metal-composite insectile robot with multi-DOF legs. IEEE/ASME Trans. Mechatron. 18(2), 547–555 (2013)CrossRefGoogle Scholar
  54. 54.
    Chen, Z., Shatara, S., Tan, X.: Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite caudal fin. IEEE/ASME Trans. Mechatron. 15(3), 448–459 (2010)CrossRefGoogle Scholar
  55. 55.
    Arena, P., Bonomo, C., Fortuna, L., Frasca, M., Graziani, S.: Design and control of an IPMC wormlike robot. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(5), 1044–1052 (2006)CrossRefGoogle Scholar
  56. 56.
    Ruiz, S., Mead, B., Palmre, V., Kim, K.J., Yim, W.: A cylindrical ionic polymer-metal composite-based robotic catheter platform: modeling, design and control. Smart Mater. Struct. 24, 015007 (2015)CrossRefGoogle Scholar
  57. 57.
    Annabestani, M., Fardmanesh, M.: Ionic electro active polymer-based soft actuators and their applications in microfluidic micropumps, microvalves, and micromixers: a review. arXiv preprint arXiv:1904.07149 (2019)
  58. 58.
    Annabestani, M., Mohammadzadeh, H., Aghassizadeh, A., Azizmohseni, S., Fardmanesh, M.: Active microfluidic micromixer design using Ionic polymer–metal composites. In: Iranian conference on electrical engineering (ICEE) (2019)Google Scholar
  59. 59.
    Sigrist, Z., Grivel, E., Alcoverro, B.: Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method. Signal Process. 92(4), 1010–1020 (2012)CrossRefGoogle Scholar
  60. 60.
    Mathews, V.J.: Adaptive Volterra filters using orthogonal structures. Signal Process. Lett. IEEE 3(12), 307–309 (1996)CrossRefGoogle Scholar
  61. 61.
    Billings, S.A., Fakhouri, S.Y.: Non-linear system identification using the Hammerstein model. Int. J. Syst. Sci. 10(5)567–578, 1979/05/01 (1979)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations