ESO-based fault-tolerant anti-disturbance control for air-breathing hypersonic vehicles with variable geometry inlet

  • Yu’ang LiuEmail author
  • Qing Wang
  • Changhua Hu
  • Chaoyang Dong
Original paper


The fault-tolerant anti-disturbance control problem for air-breathing hypersonic vehicles with variable geometry inlet (AHV-VGI) is investigated. The VGI technique enlarges the AHV flight envelope at the expense of the system to inevitably possess unknown disturbances, model uncertainties and actuator faults. A novel fault-tolerant control strategy is proposed under the back-stepping control scheme based on extended state observer (ESO) and dynamic inversion. In each step, two ESOs are designed. The first one estimates the virtual control signals, and the second one approximates the total uncertainties. Dynamic inversion is introduced into the controller to deal with the non-affine actuator faults. In particular, the ESOs are activated successively in the designed controller. ESO estimation errors and output tracking errors of the AHV-VGI system are proved to be arbitrarily small in theory. Simulation results are provided to demonstrate the effectiveness and superiority of the proposed control strategy.


Fault-tolerant control Hypersonic vehicles Variable geometry inlet Extended state observer Back-stepping Dynamic inversion 



This work is supported by the National Natural Science Foundation of China under Grant Numbers 61833016 and 61873295.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rodriguez, A.A., Dickeson, J.J., Cifdaloz, O., McCullen, R., Benavides, J., Sridharan, S., Kelkar, A. Vogel, J.M., Soloway, D.: Modeling and control of scramjet-powered hypersonic vehicles: challenges, trends, and tradeoffs. In: AIAA Guidance, Navigation and Control Conference and Exhibit, vol. 6793 (2008)Google Scholar
  2. 2.
    Sridharan, S., Rodriguez, A.A.: Impact of control specifications on vehicle design for scramjet-powered hypersonic vehicles. In: AIAA Guidance, Navigation, and Control (GNC) Conference, vol. 5166 (2013)Google Scholar
  3. 3.
    Echols, J.A., Puttannaiah, K., Mondal, K., Rodriguez A.A.: Fundamental control system design issues for scramjet-powered hypersonic vehicles. In: AIAA Guidance, Navigation, and Control (GNC) Conference, American Institute of Aeronautics and Astronautics Inc, AIAA (2015)Google Scholar
  4. 4.
    Dou, L., Su, P., Ding, Z.: Modeling and nonlinear control for air-breathing hypersonic vehicle with variable geometry inlet. Aerosp. Sci. Technol. 67, 422–432 (2017)CrossRefGoogle Scholar
  5. 5.
    Pu, Z., Tan, X., Fan, G., Yi, J.: Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle. Int. J. Syst. Sci. 46(16), 3019–3031 (2015)CrossRefGoogle Scholar
  6. 6.
    Huang, Y., Sun, C., Qian, C., Wang, L.: Linear parameter varying switching attitude control for a near space hypersonic vehicle with parametric uncertainties. Int. J. Syst. Sci. 46(16), 3019–3031 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Bu, X.: Air-Breathing hypersonic vehicles funnel control using neural approximation of non-affine dynamics. IEEE/ASME Trans. Mech. 23(5), 2099–2108 (2018)CrossRefGoogle Scholar
  8. 8.
    Bu, X., He, G., Wamg, K.: Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design. ISA Trans. 75, 88–100 (2018)CrossRefGoogle Scholar
  9. 9.
    Bu, X.: Guaranteeing prescribed output tracking performance for air-breathing hypersonic vehicles via non-affine back-stepping control design. Nonlinear Dyn. 91, 525–538 (2018)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bu, X., Wu, X., Huang, J., Wei, D.: Robust estimation-free prescribed performance back-stepping control of air-breathing hypersonic vehicles without affine models. Int J. Control 89(11), 2185–2200 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Bu, X., Wu, X., Huang, J., Ma, Z., Zhang, R.: Minimal-learning-parameter based simplified adaptive neural back-stepping control of flexible air-breathing hypersonic vehicles without virtual controllers. Neurocomputing 175, 816–825 (2016)CrossRefGoogle Scholar
  12. 12.
    Macheret, S.O., Shneider, M.N., Miles, R.B.: Scramjet inlet control by off-body energy addition: a virtual cowl. AIAA J. 43(11), 2294–2302 (2004)CrossRefGoogle Scholar
  13. 13.
    Rudd, L.V., Rankins, F., Pines, D.J.: Moveable cowl control for in-creased hypersonic performance. In: 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, pp. 1–6 (1998)Google Scholar
  14. 14.
    Huebner, L.D., Rock, K.E., Ruf, E.G., Witte, D.W., Andrews, E.H.: Hyper-X flight engine ground testing for flight risk reduction. J. Spacecr. Rockets 38(6), 833–852 (2001)CrossRefGoogle Scholar
  15. 15.
    Kojima, T., Tanatsugu, N., Sato, T.,Kanda M., Enomoto, Y.: Development study on axisymmetric air inlet for ATREX engine. In: 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference (2001)Google Scholar
  16. 16.
    Kuranov, A., Sheikin, E.: MHD control by external and internal flows in scramjet under “Ajax” concept. In: 41st AIAA Aerospace Sciences Meeting-Weakly Ionized Gas Workshop, Reno, NV, AIAA paper, vol. 173 (2003)Google Scholar
  17. 17.
    Dou, L., Gao, J., Zong, Q., Ding, Z.: Modeling and switching control of air-breathing hypersonic vehicle with variable geometry inlet. J. Frankl. Inst. 355, 6904–6926 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Dou, L., Su, P., Zong, Q., Ding, Z.: Fuzzy disturbance observer-based dynamic surface control for air-breathing hypersonic vehicle with variable geometry inlets. IET Control Theory Appl. 12(1), 10–19 (2018)CrossRefMathSciNetGoogle Scholar
  19. 19.
    An, H., Wu, Q., Xia, H., Wang, C.: Multiple Lyapunov function-based longitudinal maneuver control of air-breathing hypersonic vehicles. Int. J. Control (2019). CrossRefGoogle Scholar
  20. 20.
    An, H., Fidan, B., Liu, J., Wang, C., Wu, L.: Adaptive fault-tolerant control of air-breathing hypersonic vehicles robust to input nonlinearities. Int. J. Control (2017). CrossRefzbMATHGoogle Scholar
  21. 21.
    Fiorentini, L., Serrani, A., Bolender, M., Doman, D.: Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J. Guid. Control Dyn. 32(2), 402–417 (2009)CrossRefGoogle Scholar
  22. 22.
    Wang, Z., Yuan, J., Pan, Y., Wei, J.: Neural network-based adaptive fault tolerant consensus control for a class of high order multiagent systems with input quantization and time-varying parameters. Neurocomputing 266, 315–324 (2017)CrossRefGoogle Scholar
  23. 23.
    Wang, Z., Yuan, J., Pan, Y., Che, D.: Adaptive neural control for high order Markovian jump nonlinear systems with unmodeled dynamics and dead zone inputs. Neurocomputing 247, 62–72 (2017)CrossRefGoogle Scholar
  24. 24.
    Wang, Z., Yuan, Y., Yang, H.: Adaptive fuzzy tracking control for strict-feedback Markov jumping nonlinear systems with actuator failures and unmodeled Dynamics. IEEE Trans. Cybern. (2018). CrossRefGoogle Scholar
  25. 25.
    Wang, Z., Yuan, J.: Full state constrained adaptive fuzzy control for stochastic nonlinear switched systems with input quantization. IEEE Trans. Fuzzy Syst. (2019). CrossRefGoogle Scholar
  26. 26.
    An, H., Wu, Q.: Adaptive control of variable geometry inlet–configured air-breathing hypersonic vehicles. J. Spacecr. Rockets (2019). CrossRefGoogle Scholar
  27. 27.
    An, H., Wu, Q., Wang, C., Cao, X.: Simplified fault-tolerant adaptive control of air-breathing hypersonic vehicles. Int J. Control (2018). CrossRefGoogle Scholar
  28. 28.
    Gao, G., Wang, J., Wang, X.: Adaptive fault-tolerant control for feedback linearizable systems with an aircraft application. Int. J. Robust Nonlinear Control 25, 1301–1326 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Li, H., Cheng, Y., Si, Y., Gao, H.: Reference tracking control for flexible air-breathing hypersonic vehicle with actuator delay and uncertainty. J. Syst. Eng. Electron. 22(1), 141–145 (2011)CrossRefzbMATHGoogle Scholar
  30. 30.
    Zhao, D., Jiang, B., Yang, H., Tao, G.: Fault-tolerant control of flexible air-breathing hypersonic vehicles in linear ODE-beam systems. Int. J. Control (2018). CrossRefGoogle Scholar
  31. 31.
    Hu, X., Gao, H., Karimi, H., Wu, L., Hu, C.: Fuzzy reliable tracking control for flexible-air breathing hypersonic vehicles. Int. J. Fuzzy Syst. 13(4), 1–12 (2011)MathSciNetGoogle Scholar
  32. 32.
    Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)CrossRefGoogle Scholar
  33. 33.
    Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)CrossRefGoogle Scholar
  34. 34.
    Ran, M., Wang, Q., Dong, C.: Active disturbance rejection control for uncertain nonaffine-in-control nonlinear systems. IEEE Trans. Autom. Control 62(11), 5830–5836 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Guo, B., Wu, Z.: Output tracking for a class of nonlinear systems with mismatched uncertainties by active disturbance control. Syst. Control Lett. 100, 21–31 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Ran, M., Wang, Q., Dong, C., Hou, Y., Wang, Z.: Backstepping active disturbance rejection control: a delayed activation approach. IET Control Theory Appl. 11(14), 2336–2342 (2017)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Gong, L., Wang, Q., Dong, C.: Disturbance rejection control of morphing aircraft based on switched nonlinear systems. Nonlinear Dyn. (2019). CrossRefGoogle Scholar
  38. 38.
    Zhu, E., Pang, J., Sun, N., Gao, H., Sun, Q., Chen, Z.: Airship horizontal trajectory tracking control based on active disturbance rejection control. Nonlinear Dyn. 75(4), 725–734 (2014)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Zhang, C., Yang, J., Li, S., Yang, N.: A generalized active disturbance rejection control method for nonlinear uncertain systems subject to additive disturbance. Nonlinear Dyn. 83(4), 2361–2372 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Tian, J., Zhang, S., Zhang, Y., Li, T.: Active disturbance rejection control based robust output feedback autopilot design for airbreathing hypersonic vehicles. ISA Trans. 74, 45–59 (2018)CrossRefGoogle Scholar
  41. 41.
    Pu, Z., Yuan, R., Yi, J., Tan, X.: A class of adaptive extended state observers for nonlinear disturbed systems. IEEE Trans. Ind. Electron. 62(9), 5858–5869 (2015)CrossRefGoogle Scholar
  42. 42.
    Pu, Z., Yuan, R., Tan, X., Yi, J.: Active robust control of uncertainty and flexibility suppression for air-breathing hypersonic vehicles. Aerosp. Sci. Technol. 42, 429–441 (2015)CrossRefGoogle Scholar
  43. 43.
    Bolender, M., Doman, D.: Nonlinear longitudinal dynamical model of an airbreathing hypersonic vehicle. J. Space Rockets 44, 374–387 (2007)CrossRefGoogle Scholar
  44. 44.
    Li, Y., Yang, G.: Fuzzy adaptive output feedback fault-tolerant tracking control of a class of uncertain nonlinear system with non-affine nonlinear faults. IEEE Trans. Fuzzy Syst. 24(1), 223–234 (2016)CrossRefGoogle Scholar
  45. 45.
    Gao, G., Wang, J.: Observer-based fault-tolerant control for an air-breathing hypersonic vehicle mode. Nonlinear Dyn. 76, 409–430 (2014)CrossRefzbMATHGoogle Scholar
  46. 46.
    Hu, X., Karimi, H., Wu, L., Guo, Y.: Model predictive control-based nonlinear fault tolerant control for air-breathing hypersonic vehicles. IET Control Appl. 8(13), 1147–1153 (2014)CrossRefGoogle Scholar
  47. 47.
    Zhao, Z., Guo, B.: A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty. IEEE Trans. Autom. Control 88(1), 211–218 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
  48. 48.
    Yoo, S.: Fault-tolerant control of strict-feedback non-linear time-delay systems with prescribed performance. IET Control Appl. 7(11), 1553–1561 (2013)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Yoo, S.: Neural-network-based decentralized fault-tolerant control for a class of nonlinear large-scale systems with unknown time-delayed interaction faults. J. Frank. Inst. 351(3), 1615–1629 (2014)CrossRefzbMATHGoogle Scholar
  50. 50.
    Wu, H., Qiang, X., Guo, L.: L-infinity-gain adaptive fuzzy fault accommodation control design for nonlinear time delay systems. IEEE Trans. Syst. Man Cybern. B Cybern. 41(3), 817–827 (2011)CrossRefGoogle Scholar
  51. 51.
    Panagi, P., Polycarpou, M.: Decentralized fault tolerant control of a class of interconnected nonlinear systems. IEEE Trans. Autom. Control 56(1), 178–184 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    Ferdowsi, H., Raja, D.L., Jagannathan, S.: A decentralized fault detection and prediction scheme for nonlinear interconnected continuous-time systems. In: Proceedings of International Joint Conference on Neural Network, vol. 1–7 (2012)Google Scholar
  53. 53.
    Ferdowsi, H., Jagannathan, S.: A decentralized fault accommodation scheme for nonlinear interconnected systems. In: Proceedings of IEEE Conference on Prognostics Health Manage, vol. 1–6 (2013)Google Scholar
  54. 54.
    Parker, J., Serrani, A., Yurkovich, S., Bolender, M., Doman, D.: Control-oriented modeling of an air-Breathing hypersonic vehicle. J. Guid. Control Dyn. 30(3), 856–869 (2007)CrossRefGoogle Scholar
  55. 55.
    Freidovich, L., Khalil, L.: Performance recovery of feedback-linearization-based designs. IEEE Trans. Autom. Control 53(10), 2324–2334 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  56. 56.
    Guo, B., Zhao, Z.: On convergence of the nonlinear active disturbance rejection control for MIMO systems. SIAM J. Control Optim. 51(2), 1727–1757 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  57. 57.
    Guo, B., Zhao, Z.: On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst. Control Lett. 60(6), 420–430 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  58. 58.
    Gao, Z.: Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of American Control Conference, Denver, CO, pp. 4989–4996 (2003)Google Scholar
  59. 59.
    Chakrabortty, A., Arcak, M.: Robust stabilization and performance recovery of nonlinear systems with unmodeled dynamics. IEEE Trans. Autom. Control 54(6), 1351–1356 (2009)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Automation Science and Electrical EngineeringBeihang UniversityBeijingChina
  2. 2.High-Tech Institute of Xi’anXi’anChina
  3. 3.School of Aeronautical Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations