Advertisement

Event-triggered synchronization for second-order nodes in complex dynamical network with time-varying coupling matrices

  • Li Yan
  • Weisheng Chen
  • Xinpeng Fang
  • Hao DaiEmail author
Original paper
  • 48 Downloads

Abstract

The synchronization of second-order systems in complex dynamical networks (CDNs) with time-varying coupling matrices is investigated in this paper. By using the matrix inequalities, event-triggered scheme and graph theory, one important sufficient condition is obtained to ensure that the above-mentioned CDNs can achieve the exponential synchronization under the cooperatively directed spanning tree topology. Meanwhile, the specific Lyapunov stability analysis method is given. In addition, continuous communication is avoided through introducing an event-triggered scheme, so that the energy consumption and communication load are decreased. The Zeno behavior is excluded by applying the right upper Dini derivative, which avoid infinite triggers. At last, the effectiveness of the reported exponential synchronization condition is verified through simulation examples.

Keywords

Cooperatively directed spanning tree (CDST) topology Complex dynamical networks (CDNs) Second-order nonlinear systems Exponential synchronization Time-varying coupling Event-triggered scheme 

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant Nos: 61503292, 61673308 and 61703326), the Natural Science Foundation of Shaanxi Province (Grant No: 2018JM6079) and the Fundamental Research Funds for the Central Universities (Grant No: JB181305).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhang, H., Wang, X.Y., Lin, X.H.: Topology identification and module-phase synchronization of neural network with time delay. IEEE Trans. Syst. Man Cybern. Syst 47, 885–892 (2016)CrossRefGoogle Scholar
  2. 2.
    Dorfler, F., Bullo, F.: Synchronization and transient stability in power networks and non-uniform kuramoto oscillators. SIAM J. Control Optim. 50, 1616–1642 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Vodenska, I., Aoyama, H., Fujiwara, Y., Iyetomi, H., Arai, Y.: Interdependencies and causalities in coupled financial networks. PLoS ONE 11, e0150994 (2016)CrossRefGoogle Scholar
  4. 4.
    Wilkinson, S.M., Dunn, S., Ma, S.: The vulnerability of the European air traffic network to spatial hazards. Nat. Hazards 60, 1027–1036 (2012)CrossRefGoogle Scholar
  5. 5.
    Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327, 1389–1391 (2010)CrossRefGoogle Scholar
  6. 6.
    Wu, Z.G., Park, J.H., Su, H.Y., Song, B., Chu, J.: Exponential synchronization for complex dynamical networks with sampled-data. J. Frankl. Inst. 349, 2735–2749 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49, 1520–1533 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50, 655–661 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Li, S.H., Du, H.B., Lin, X.Z.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47, 1706–1722 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Li, Z., Chen, G.R.: Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst. II: Exp. Briefs 53, 28–33 (2006)CrossRefGoogle Scholar
  11. 11.
    Yu, W.W., Chen, G.R., Lü, J.H.: On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Mei, J., Jiang, M.H., Xu, W.M., Wang, B.: Finite-time synchronization control of complex dynamical networks with time delay. Commun. Nonlinear Sci. Numer. Simul. 18, 2462–2478 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Feng, J.W., Yu, F.F., Zhao, Y.: Exponential synchronization of nonlinearly coupled complex networks with hybrid time-varying delays via impulsive control. Nonlinear Dyn. 85, 621–632 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Guo, G.: Linear systems with medium-access constraint and markov actuator assignment. IEEE Trans. Circuits Syst. I-Regul. Pap. 57, 2999–3010 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Saboori, I., Khorasani, K.: \(\text{ H }_\infty \) consensus achievement of multi-agent systems with directed and switching topology networks. IEEE Trans. Autom. Control 59, 3104–3109 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor. IEEE Trans. Autom. Control 48, 988–1001 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Angeli, D., Bliman, P.A.: Convergence speed of unsteady distributed consensus: decay estimate along the settling spanning-trees. SIAM J. Control. Optim 48, 1–32 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Liu, J.Y., Chen, W.S., Dai, H.: Distributed Zero–Gradient–Sum (ZGS) consensus optimisation over networks with time-varying topologies. Int. J. Syst. Sci. 48, 1836–1843 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Lü, J.H., Chen, G.R.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50, 841–846 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Yu, W.W., DeLellis, P., Chen, G.R., Dibernardo, M., Kurths, J.: Distributed adaptive control of synchronization in complex networks. IEEE Trans. Autom. Control 57, 2153–2158 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Yu, H., Xia, X.H.: Adaptive consensus of multi-agents in networks with jointly connected topologies. Automatica 48, 1783–1790 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Chen, Y., Yu, W.W., Tan, S.L., Zhu, H.H.: Synchronizing nonlinear complex networks via switching disconnected topology. Automatica 70, 189–194 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Shen, H., Park, J.H., Wu, Z.G., Zhang, Z.Q.: Finite-time \(\text{ H }_\infty \) synchronization for complex networks with semi-Markov jump topology. Commun. Nonlinear Sci. Numer. Simul. 24, 40–51 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhao, W., Wu, H.Q.: Fixed-time synchronization of semi-Markovian jumping neural networks with time-varying delays. Adv. Differ. Equ. 213, 1–21 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Ren, W.: Synchronization of coupled harmonic oscillators with local interaction. Automatica 44, 3195–3200 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Amster, P., Mariani, M.: Some results on the forced pendulum equation. Nonlinear Anal. 68, 1874–1880 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Ren, C.E., Chen, L., Chen, C.L.P., Du, T.: Quantized consensus control for second-order multi-agent systems with nonlinear dynamics. Neurocomputing 175, 529–537 (2016)CrossRefGoogle Scholar
  28. 28.
    Qian, Y.F., Wu, X.Q., Lü, J.H., Lu, J.A.: Second-order consensus of multi-agent systems with nonlinear dynamics via impulsive control. Neurocomputing 125, 142–147 (2014)CrossRefGoogle Scholar
  29. 29.
    Hu, H.X., Liu, A.D., Xuan, Q., Yu, L., Xie, G.M.: Second-order consensus of multi-agent systems in the cooperation-competition network with switching topologies: a time-delayed impulsive control approach. Syst. Control Lett. 62, 1125–1135 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Li, H.Q., Liao, X.F., Lei, X.Y., Huang, T.W., Zhu, W.: Second-Order consensus seeking in multi-agent systems with nonlinear dynamics over random switching directed networks. IEEE Trans. Circuits Syst. I-Regul. Pap. 60, 1595–1607 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yu, M., Shang, W.P., Chen, Z.Q.: Exponential synchronization for second-order nodes in complex dynamical network with communication time delays and switching topologies. J. Control Sci. Eng. Article ID: 7836316, pp. 1–10 (2017)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Lin, P., Jia, Y.M.: Consensus of a class of second-order multi-agent systems with time-delay and jointly-connected topologies. IEEE Trans. Autom. Control 55, 778–784 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Li, H.Q., Liao, X.F., Huang, T.W., Zhu, W.: Event-triggering sampling based leader-following consensus in second-order multi-agent systems. IEEE Trans. Autom. Control 60, 1998–2003 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Dai, J.T., Guo, G.: Event-based consensus for second-order multi-agent systems with actuator saturation under fixed and Markovian switching topologies. J. Frankl. Inst 354, 6098–6118 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Wang, X.S., Mei, Y., Liu, S.: Event-triggered tracking control for second-order multi-agent systems with fixed and switching topologies. In: International Conference on Control, Automation, Robotics & Vision, vol. 36 (2016)Google Scholar
  36. 36.
    Wu, Z.G., Xu, Y., Lu, R.Q., Wu, Y.Q., Huang, T.W.: Event-triggered control for consensus of multiagent systems with fixed/switching topologies. IEEE Trans. Autom. Control 48, 1736–1746 (2018)Google Scholar
  37. 37.
    Dai, H., Jia, J.P., Yan, L., Wang, F.K., Chen, W.S.: Event-triggered exponential synchronization of complex dynamical networks with cooperatively directed spanning tree topology. Neurocomputing 330, 355–368 (2019)CrossRefGoogle Scholar
  38. 38.
    Lu, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50, 841–846 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Fang, X.P., Chen, W.S.: Synchronization of complex networks with time-varying inner coupling. Nonlinear Dyn. 85, 13–21 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Zhang, C., Wang, X.Y., Wang, C.P.: Synchronization of complex networks with time-varying inner coupling and outer coupling matrices. Math. Methods Appl. Sci 40, 4237–4245 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Dai, H., Chen, W.S., Xie, J.: Exponential synchronization for second-order nonlinear systems in complex dynamical networks with time-varying inner coupling via distributed event-triggered transmission strategy. Nonlinear Dyn. 92, 853–867 (2018)zbMATHCrossRefGoogle Scholar
  42. 42.
    Dai, H., Chen, W.S., Jia, J.P., Liu, J.Y., Zhang, Z.Q.: Exponential synchronization of complex dynamical networks with time-varying inner coupling via event-triggered communication. Neurocomputing 245, 124–132 (2017)CrossRefGoogle Scholar
  43. 43.
    Tuna, S.E.: Sufficient conditions on observability grammian for synchronization in arrays of coupled linear time-varying systems. IEEE Trans. Autom. Control 55, 2586–2590 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Wu, X.J., Lu, H.T.: Generalized projective synchronization between two different general complex dynamical networks with delayed coupling. Phys. Lett. A 374, 3932–3941 (2010)zbMATHCrossRefGoogle Scholar
  45. 45.
    Li, H.Q., Chen, G., Dong, Z.Y., Xia, D.W.: Consensus analysis of multiagent systems with second-order nonlinear dynamics and general directed topology: an event-triggered scheme. Inform. Sci. 370–371, 598–622 (2016)CrossRefGoogle Scholar
  46. 46.
    Ma, T.D., Zhang, D.: Hybrid synchronization of coupled fractional-order complex networks. Neurocomputing 157, 166–172 (2015)CrossRefGoogle Scholar
  47. 47.
    Peng, X., Wu, H.Q., Song, K., Shi, J.X.: Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays. Neural Netw. 94, 46–54 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXidian UniversityXi’anPeople’s Republic of China
  2. 2.School of Aerospace Science and TechnologyXidian UniversityXi’anPeople’s Republic of China

Personalised recommendations