Advertisement

A new propagation model coupling the offline and online social networks

  • Qian Shao
  • Chengyi XiaEmail author
  • Lin Wang
  • Huijia Li
Original paper
  • 56 Downloads

Abstract

Although rapid advancements of online networking technologies and softwares (e.g., 5G, Internet of Things, Big data) have substantially facilitated our communications with others, the regular face-to-face contact is still an important communication channel in our daily life. Modeling the information diffusion through both online and offline interactions has become a challenging topic that has attracted much attention from the field of industrial informatics. To this end, we characterize the coupling effect of online and offline communication by developing a multilayer network propagation model, which considers three novel aspects: two distinct contagions taking place at two types of social software; competition and dynamic processes between them under the joint influence of individual selection and information dissemination; and information coupling between offline and online social networks. Moreover, a mean-field method is provided to analyze the critical threshold, and extensive Monte Carlo simulations are performed to demonstrate the theoretical predictions and explore the rich dynamical phenomena. Current results are conducive to understanding the transmission of information or epidemic spreading within the structured population, and further motivating the design of networked hardware and software with high performance.

Keywords

Propagation model Multilayer network Offline and online networks Mean-field approximation Monte Carlo simulation 

Notes

Acknowledgements

We will acknowledge the funding support of the National Natural Science Foundation of China (NSFC) under Grant No. 61773286.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M’Kendrick, L.C.A.G.: Application of mathematics to medical problems. Proc. Edinb. Math. Soc. 44, 98–130 (1925)zbMATHCrossRefGoogle Scholar
  2. 2.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12, 211–223 (2001)CrossRefGoogle Scholar
  3. 3.
    Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through blogspace. In: Proceedings of the 13th International Conference on World Wide Web, pp. 491–501 (2004)Google Scholar
  4. 4.
    Staniford, S., Paxson, V., Weaver, N.: How to own the internet in your spare time. In: Proceedings of the 11th USENIX Security Symposium, pp. 149–167 (2002)Google Scholar
  5. 5.
    Thommes, R.W., Coates, M.: Epidemiological modelling of peer-to-peer viruses and pollution. In: IEEE International Conference on Computer Communications (2006)Google Scholar
  6. 6.
    Rogers, E.M.: Diffusion of innovations. J. Contin. Educ. Health Prof. 17, 62–64 (1997)CrossRefGoogle Scholar
  7. 7.
    Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Xia, C., Wang, L., Sun, S., Wang, J.: An SIR model with infection delay and propagation vector in complex networks. Nonlinear Dyn. 69, 927–934 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Romualdo, P.-S., Alessandro, V.: Epidemic dynamics in finite size scale-free networks. Phys. Rev. E 65, 035108 (2002)CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: IEEE 22nd Symposium on Reliable Distributed Systems, pp. 25–34 (2003)Google Scholar
  11. 11.
    Prakash, B.A., Chakrabarti, D., Faloutsos, M., Valler, N.C., Faloutsos, C.: Threshold conditions for arbitrary cascade models on arbitrary networks. In: IEEE 11th International Conference on Data Mining (2011)Google Scholar
  12. 12.
    Ganesh, A., Massoulie, L., Towsley, D.: The effect of network topology on the spread of epidemics. In: IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies (2005)Google Scholar
  13. 13.
    Newman, M.E.J.: Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. 95, 108701 (2005)CrossRefGoogle Scholar
  14. 14.
    Wang, T.: Pattern dynamics of an epidemic model with nonlinear incidence rate. Nonlinear Dyn. 71, 31–34 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhao, Y., Sun, X., Liu, Y., Kurths, J.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Nonlinear Dyn. 93, 1315–1324 (2018)CrossRefGoogle Scholar
  17. 17.
    Wu, F., Wang, C., Jin, W., Ma, J.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)CrossRefGoogle Scholar
  19. 19.
    Parshani, R., Buldyrev, S.V., Havlin, S.: Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105, 048701 (2010)CrossRefGoogle Scholar
  20. 20.
    Hu, Y., Ksherim, B., Cohen, R., Havlin, S.: Percolation in interdependent and interconnected networks: abrupt change from second- to first-order transitions. Phys. Rev. E 84, 066116 (2011)CrossRefGoogle Scholar
  21. 21.
    Zhou, D., Bashan, A., Cohen, R., Berezin, Y., Shnerb, N., Havlin, S.: Simultaneous first- and second-order percolation transitions in interdependent networks. Phys. Rev. E 90, 012803 (2014)CrossRefGoogle Scholar
  22. 22.
    Radicchi, F., Arenas, A.: Abrupt transition in the structural formation of interconnected networks. Nat. Phys. 9, 717–720 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhao, K., Bianconi, G.: Percolation on interdependent networks with a fraction of antagonistic interactions. J. Stat. Phys. 152, 1069–1083 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Zhou, L., Wang, C., Zhou, L.: Cluster synchronization on multiple sub-networks of complex networks with nonidentical nodes via pinning control. Nonlinear Dyn. 83, 1079–1100 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Weng, L., Menczer, F., Ahn, Y.Y.: Virality prediction and community structure in social networks. Sci. Rep. 3, 2522 (2013)CrossRefGoogle Scholar
  26. 26.
    Centola, D.: The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010)CrossRefGoogle Scholar
  27. 27.
    Zheng, C., Xia, C., Guo, Q., Dehmer, M.: Interplay between SIR-based disease spreading and awareness diffusion on multiplex networks. J. Parallel Distrib. Comput. 115, 20–28 (2018)CrossRefGoogle Scholar
  28. 28.
    Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)CrossRefGoogle Scholar
  29. 29.
    Yao, Z., Ma, J., Yao, Y., Wang, C.: Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn. 96, 205–217 (2019)CrossRefGoogle Scholar
  30. 30.
    Upadhyay, R.K., Pal, A.K., Kumari, S., Roy, P.: Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates. Nonlinear Dyn. 96, 2351–2368 (2019)CrossRefGoogle Scholar
  31. 31.
    Wang, Z., Guo, Q., Sun, S., Xia, C.: The impact of awareness diffusion on SIR-like epidemics in multiplex networks. Appl. Math. Comput. 349, 134–137 (2019)MathSciNetGoogle Scholar
  32. 32.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978)CrossRefGoogle Scholar
  33. 33.
    Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA 99, 5766–5771 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Brummitt, C.D., Kobayashi, T.: Cascades in multiplex financial networks with debts of different seniority. Phys. Rev. E 91, 062813 (2015)CrossRefGoogle Scholar
  35. 35.
    Nishikawa, T., Motter, A.E., Lai, Y., Hoppensteadt, F.C.: Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys. Rev. Lett. 91, 014101 (2003)CrossRefGoogle Scholar
  36. 36.
    De Domenico, M., Nicosia, V., Arenas, A., Latora, V.: Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015)CrossRefGoogle Scholar
  37. 37.
    Granell, C., Gómez, S., Arenas, A.: Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013)CrossRefGoogle Scholar
  38. 38.
    Sanatkar, M.R., White, W.N., Natarajan, B., Scoglio, C.M., Garrett, K.A.: Epidemic threshold of an SIS model in dynamic switching networks. IEEE Trans. Syst. Man Cybern. Syst. 46, 345–355 (2016)CrossRefGoogle Scholar
  39. 39.
    Sanz, J., Xia, C., Meloni, S., Moreno, Y.: Dynamics of interacting diseases. Phys. Rev. X 4, 041005 (2014)Google Scholar
  40. 40.
    Wang, J., Wang, L., Li, X.: Identifying spatial invasion of pandemics on metapopulation networks via anatomizing arrival history. IEEE Trans. Cybern. 46, 2782–2795 (2016)CrossRefGoogle Scholar
  41. 41.
    Watkins, N.J., Nowzari, C., Preciado, V.M., Pappas, G.J.: Optimal resource allocation for competitive spreading processes on bilayer networks. IEEE Trans. Control Netw. Syst. 5, 298–307 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Buono, C., Alvarez-Zuzek Lucila, G., Macri, P.A., Braunstein, L.A.: Epidemics in partially overlapped multiplex networks. PLoS ONE 9, e92200 (2014)CrossRefGoogle Scholar
  43. 43.
    Darabi Sahneh, F., Scoglio, C.: Competitive epidemic spreading over arbitrary multilayer networks. Phys. Rev. E 89, 062817 (2014)CrossRefGoogle Scholar
  44. 44.
    Prakash, B.A., Beutel, A., Rosenfeld, R., Faloutsos, C.: Winner takes all: competing viruses or ideas on fair-play networks. In: Proceedings of the 21st International Conference on World Wide Web (2012)Google Scholar
  45. 45.
    Wei, X., Valler, N.C., Prakash, B.A., Neamtiu, I., Faloutsos, M., Faloutsos, C.: Competing memes propagation on networks: a network science perspective. IEEE J. Sel. Areas Commun. 31, 1049–1060 (2013)CrossRefGoogle Scholar
  46. 46.
    Watkins, N.J., Nowzari, C., Preciado, V.M., Pappas, G.J.: Optimal resource allocation for competing epidemics over arbitrary networks. In: American Control Conference (2015)Google Scholar
  47. 47.
    Santos, A., Moura, J.M.F., Xavier, J.M.F.: Bi-virus SIS epidemics over networks: qualitative analysis. IEEE Trans. Netw. Sci. Eng. 2, 17–29 (2015)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Lee, K.-M., Brummitt, C.D., Goh, K.I.: Threshold cascades with response heterogeneity in multiplex networks. Phys. Rev. E 90, 062816 (2014)CrossRefGoogle Scholar
  49. 49.
    Akhmetzhanov, A.R., Worden, L., Dushoff, J.: Effects of mixing in threshold models of social behavior. Phys. Rev. E 88, 012816 (2013)CrossRefGoogle Scholar
  50. 50.
    Xia, C., Wang, Z., Zheng, C., Guo, Q., Shi, Y., Dehmer, M., Chen, Z.: A new coupled disease-awareness spreading model with mass media on multiplex networks. Inf. Sci. 471, 185–200 (2019)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Wang, J., Li, C., Xia, C., Simos, T.: Improved centrality indicators to characterize the nodal spreading capability in complex networks. Appl. Math. Comput. 334, 388–400 (2018)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Czaplicka, A., Toral, R., San, M.M.: Competition of simple and complex adoption on interdependent networks. Phys. Rev. E 94, 062301 (2016)CrossRefGoogle Scholar
  53. 53.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)CrossRefGoogle Scholar
  54. 54.
    Pastorsatorras, R., Castellano, C., Mieghem, P.V., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 120–131 (2015)MathSciNetGoogle Scholar
  55. 55.
    Salehi, M., Sharma, R., Marzolla, M., Magnani, M., Siyari, P., Montesi, D.: Spreading processes in multilayer networks. IEEE Trans. Netw. Sci. Eng. 2, 65–83 (2015)CrossRefGoogle Scholar
  56. 56.
    Wang, Y., Cao, J., Li, X., Alsaedi, A.: Edge-based epidemic dynamics with multiple routes of transmission on random networks. Nonlinear Dyn. 91, 403–420 (2018)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Rick, F.: Word of mouth and viral marketing: taking the temperature of the hottest trends in marketing. J. Consum. Mark. 25, 179–182 (2008)CrossRefGoogle Scholar
  58. 58.
    Pathak, N., Banerjee, A., Srivastava, J.: A Generalized linear threshold model for multiple cascades. In: IEEE International Conference on Data Mining (2010)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Intelligence Computing and Novel Software TechnologyTianjin University of TechnologyTianjinChina
  2. 2.Key Laboratory of Computer Vision and System (Ministry of Education)Tianjin University of TechnologyTianjinChina
  3. 3.UMR2000, CNRSInstitut PasteurParisFrance
  4. 4.School of Management Science and EngineeringCentral University of Finance and EconomicsBeijingChina

Personalised recommendations