Advertisement

High-order rogue waves and their dynamics of the Fokas–Lenells equation revisited: a variable separation technique

  • Zihao Wang
  • Linyun He
  • Zhenyun QinEmail author
  • Roger Grimshaw
  • Gui Mu
Original paper
  • 16 Downloads

Abstract

The Fokas–Lenells (FL) equation is an integrable higher-order extension of nonlinear Schrödinger equation. One approach to generating its breather solutions is based on Darboux transformation (DT) and iterations. However, the DT of FL equation contains negative powers of the spectral parameter, which can lead to very complicated expressions when N is large. In this paper, we avoid the negative powers by adopting a variable separation and Taylor expansion technique to solve the Lax pair of FL system. Furthermore, stability of the proposed technique is demonstrated in detail.

Keywords

Fokas–Lenells equation Lax pairs Variable separation Rogue waves 

Notes

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (No. 11571079, No. 11801153, No. 11701322), Shanghai Pujiang Program (No. 14PJD007), the Natural Science Foundation of Shanghai (No. 14ZR1403500) and the Young Teachers Foundation (No. 1411018) of Fudan University. Also, the authors are very grateful to Professor Peter D. Miller and Professor John E. Fornaess for their enthusiastic support and useful suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Dysthe, K., Krogstad, H.E., Müller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Akhmediev, N., Pelinovsky, E.: Editorial—introductory remarks on “discussion & debate: rogue waves—towards a unifying concept?”. Eur. Phys. J. Special Top. 185, 1–4 (2010)CrossRefGoogle Scholar
  3. 3.
    Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nat. (Lond.) 450, 1054–1057 (2007)CrossRefGoogle Scholar
  4. 4.
    Moslem, W.M., Shukla, P.K., Eliasson, B.: Surface plasma rogue waves. Europhys. Lett. 96, 25002 (2011)CrossRefGoogle Scholar
  5. 5.
    Ganshin, A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-Deglin, L.P., McClintock, P.V.E.: Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 101, 065303 (2008)CrossRefGoogle Scholar
  6. 6.
    Yan, Z.Y.: Two-dimensional vector rogue wave excitations and controlling parameters in the two-component Gross–Pitaevskii equations with varying potentials. Nonlinear Dyn. 85, 2515–2529 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Shats, M., Punzmann, H., Xia, H.: Capillary rogue waves. Phys. Rev. Lett. 104, 104503 (2010)CrossRefGoogle Scholar
  8. 8.
    Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhao, L.C.: Dynamics of nonautonomous rogue waves in Bose–Einstein condensate. Ann. Phys. 329, 73–79 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zakharov, V.F., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of wave in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)MathSciNetGoogle Scholar
  11. 11.
    Peregrine, D.H.: Water-waves, nonlinear Schrödinger equations and solutions. J. Aust. Math. Soc. B 25, 16–43 (1983)CrossRefGoogle Scholar
  12. 12.
    Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Wei, J., Wang, L.: Baseband modulation instability, rogue waves and state transitions in a deformed Fokas–Lenells equation. Nonlinear Dyn. 97, 343–353 (2019)CrossRefGoogle Scholar
  15. 15.
    Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ankiewicz, A., Akhmediev, N., Soto-Crespo, J.M.: Discrete rogue waves of the Ablowitz–Ladik and Hirota equations. Phys. Rev. E 82, 026602 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ankiewicz, A., Akhmediev, N.: Rogue wave-type solutions of the mKdV equation and their relation to known NLSE rogue wave solutions. Nonlinear Dyn. 91, 1931–1938 (2018)CrossRefGoogle Scholar
  18. 18.
    Dai, C.Q., Liu, J., Fan, Y., Yu, D.G.: Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality. Nonlinear Dyn. 88, 1373–1383 (2017)CrossRefGoogle Scholar
  19. 19.
    Zhu, Y., Qin, W., Li, J.T., Han, J.Z., Dai, C.Q., Wang, Y.Y.: Recurrence behavior for controllable excitation of rogue waves in a two-dimensional \(\cal{PT}\)-symmetric coupler. Nonlinear Dyn. 88, 1883–1889 (2017)CrossRefGoogle Scholar
  20. 20.
    Wang, Y.Y., Chen, L., Dai, C.Q., Zheng, J., Fan, Y.: Exact vector multipole and vortex solitons in the media with spatially modulated cubic-quintic nonlinearity. Nonlinear Dyn. 90, 1269–1275 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ding, D.J., Jin, D.Q., Dai, C.Q.: Analytical solutions of differential-difference Sine–Gordon equation. Thermal Sci. 21, 1701–1705 (2017)CrossRefGoogle Scholar
  22. 22.
    Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)CrossRefGoogle Scholar
  23. 23.
    Yin, H.M., Tian, B., Zhao, X.C.: Breather-like solitons, rogue waves, quasi-periodic/chaotic states for the surface elevation of water waves. Nonlinear Dyn. 97, 21–31 (2019)CrossRefGoogle Scholar
  24. 24.
    Ma, Y.L.: Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrodinger system with two higher-order dispersion operators in optical fibers. Nonlinear Dyn. 97, 95–105 (2019)CrossRefGoogle Scholar
  25. 25.
    Albares, P., Estevez, P.G., Radha, R.: Lumps and rogue waves of generalized Nizhnik–Novikov–Veselov equation. Nonlinear Dyn. 90, 2305–2315 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nikolic, S.N., Ashour, O.A., Aleksic, N.B.: Breathers, solitons and rogue waves of the quintic nonlinear Schrodinger equation on various backgrounds. Nonlinear Dyn. 95, 2855–2865 (2019)CrossRefGoogle Scholar
  27. 27.
    Tang, Y.N., He, C.H., Zhou, M.L.: Darboux transformation of a new generalized nonlinear Schrodinger equation: soliton solutions, breather solutions, and rogue wave solutions. Nonlinear Dyn. 92, 2023–2036 (2018)CrossRefGoogle Scholar
  28. 28.
    Lenells, J., Fokas, A.S.: Boundary-value problems for the stationary axisymmetric Einstein equations: a rotating disc. Nonlinearity 22, 11–27 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lenells, J.: Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math. 123, 215–232 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    He, J.S., Xu, S.W., Porsezian, K.: New types of rogue wave in an erbium-doped fibre system. J. Phys. Soc. Jpn. 81, 033002 (2012)CrossRefGoogle Scholar
  31. 31.
    Xu, S.W., He, J.S., Cheng, Y., Porsezian, K.: The \(n\)-order rogue waves of Fokas–Lenells equation. Math. Meth. Appl. Sci. 38, 1106 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Mu, G., Qin, Z.Y.: Rogue waves for the coupled Schrödinger–Boussinesq equation and the coupled Higgs equation. J. Phys. Soc. Jpn. 81, 084001 (2012)CrossRefGoogle Scholar
  33. 33.
    Qin, Z.Y., Mu, G.: Matter rogue waves in an \(F=1\) spinor Bose–Einstein condensate. Phys. Rev. E 86, 036601 (2012)CrossRefGoogle Scholar
  34. 34.
    Mu, G., Qin, Z.Y.: Two spatial dimensional \(N\)-rogue waves and their dynamics in Mel’nikov equation. Nonlinear Anal. Real World Appl. 18, 1–13 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Mu, G., Qin, Z.Y., Grimshaw, R.: Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation. SIAM J. Appl. Math. 75, 1–20 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Mu, G., Qin, Z.Y.: Dynamic patterns of high-order rogue waves for Sasa–Satsuma equation. Nonlinear Anal. Real World Appl. 31, 179–209 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zihao Wang
    • 1
    • 2
  • Linyun He
    • 1
    • 3
  • Zhenyun Qin
    • 4
    Email author
  • Roger Grimshaw
    • 5
  • Gui Mu
    • 6
  1. 1.School of Mathematical SciencesFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Engineering Science and Applied Mathematics DepartmentNorthwestern UniversityEvanstonUSA
  3. 3.Harold and Inge Marcus Department of Industrial and Manufacturing EngineeringPennsylvania State UniversityPennsylvaniaUSA
  4. 4.School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear ScienceFudan UniversityShanghaiPeople’s Republic of China
  5. 5.Department of MathematicsUniversity College LondonLondonUK
  6. 6.School of MathematicsKunming UniversityKunmingPeople’s Republic of China

Personalised recommendations