Advertisement

Nonlinear Dynamics

, Volume 98, Issue 3, pp 1807–1819 | Cite as

Stability and bifurcation analysis of the period-T motion of a vibroimpact energy harvester

  • Larissa SerdukovaEmail author
  • Rachel Kuske
  • Daniil Yurchenko
Original paper
  • 160 Downloads

Abstract

Stability and bifurcation conditions for a vibroimpact motion in an inclined energy harvester with T-periodic forcing are determined analytically and numerically. This investigation provides a better understanding of impact velocity and its influence on energy harvesting efficiency and can be used to optimally design the device. The numerical and analytical results of periodic motions are in excellent agreement. The stability conditions are developed in non-dimensional parameter space through two basic nonlinear maps based on switching manifolds that correspond to impacts with the top and bottom membranes of the energy harvesting device. The range for stable simple T-periodic behavior is reduced with increasing angle of incline \(\beta \), since the influence of gravity increases the asymmetry of dynamics following impacts at the bottom and top. These asymmetric T-periodic solutions lose stability to period doubling solutions for \(\beta \ge 0\), which appear through increased asymmetry. The period doubling, symmetric and asymmetric periodic motion are illustrated by bifurcation diagrams, phase portraits and velocity time series.

Keywords

Energy harvesting Vibroimpact system Output voltage Period doubling and saddle-node bifurcations Periodic solutions Non-smooth dynamics 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Stephen, N.G.: On energy harvesting from ambient vibration. J. Sound Vib. 293, 409–425 (2006)CrossRefGoogle Scholar
  2. 2.
    Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2010)CrossRefGoogle Scholar
  3. 3.
    Yan, L., Lallart, M., Karami, A.: Low-cost orbit jump in nonlinear energy harvesters through energy-efficient stiffness modulation. Sens. Actuators A Phys. 285, 676–684 (2019)CrossRefGoogle Scholar
  4. 4.
    Bobryk, R.V., Yurchenko, D.: On enhancement of vibration-based energy harvesting by a random parametric excitation. J. Sound Vib. 366, 407–417 (2016)CrossRefGoogle Scholar
  5. 5.
    Chongfeng, W., Xingjian, J.: Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics. Commun. Nonlinear Sci. Numer. Simul. 48, 288–306 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Quinn, D.D., Triplett, A.L., Bergman, L.A., Vakakis, A.F.: Comparing linear and essentially nonlinear vibration-based energy harvesting. J. Vib. Acoust. 133, 011001 (2011) CrossRefGoogle Scholar
  7. 7.
    Ibrahim, R.A.: Vibro-impact dynamics: modeling, mapping and applications. Springer, Berlin (2009)CrossRefGoogle Scholar
  8. 8.
    Babitsky, V.I.: Theory of Vibro-impact Systems and Applications. Springer, Berlin (2013)zbMATHGoogle Scholar
  9. 9.
    Dimentberg, M.F., Yurchenko, D.V.: Random vibrations with impacts: a review. Nonlinear Dyn. 36, 229–254 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Al-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer, J.B.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. J. Non-Linear Mech. 52, 96–109 (2013)CrossRefGoogle Scholar
  11. 11.
    Gendelman, O.V., Allon, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 301–314 (2015)CrossRefGoogle Scholar
  12. 12.
    Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90, 129–155 (1983)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Whiston, G.S.: Global dynamics of a vibro-impacting linear oscillator. J. Sound Vib. 118, 395–429 (1987)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Luo, A., Guo, Y.: Vibro-impact Dynamics. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  15. 15.
    Nordmark, A.B.: Universal limit mapping in grazing bifurcations. Phys. Rev. E 55, 266–270 (1997)CrossRefGoogle Scholar
  16. 16.
    Budd, C., Dux, F., Cliffe, A.: The effect of frequency and clearance variations on single-degree-of-freedom impact oscillators. J. Sound Vib 184, 475–502 (1995)CrossRefGoogle Scholar
  17. 17.
    Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84, 173–189 (1982)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chillingworth, D.R.: Discontinuity geometry for an impact oscillator. Dyn. Syst. 17, 389–420 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wagg, D.J., Bishop, S.R.: Dynamics of a two degree of freedom vibro-impact system with multiple motion limiting constraints. Int. J. Bifurc. Chaos 14, 119–140 (2004)CrossRefGoogle Scholar
  20. 20.
    Wagg, D.J.: Periodic sticking motion in a two-degree-of-freedom impact oscillator. Int. J. of Non-Linear Mech. 40, 1076–1087 (2005)CrossRefGoogle Scholar
  21. 21.
    Simpson, D., Hogan, S., Kuske, R.: Stochastic regular grazing bifurcations. SIAM J. Appl. Dyn. Syst. 12, 533–559 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Masri, S.F., Ibrahim, A.M.: Response of the impact damper to stationary random excitation. J. Acoust. Soc. Am. 53, 200–211 (1973)CrossRefGoogle Scholar
  23. 23.
    Yurchenko, D., Val, D.V., Lai, Z.H., Gu, G., Thomson, G.: Energy harvesting from a DE-based dynamic vibro-impact system. Smart Mater. Struct. 26, 105001 (2017)CrossRefGoogle Scholar
  24. 24.
    Yurchenko, D., Lai, Z.H., Thomson, G., Val, D.V., Bobryk, R.: Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer. Appl. Energy 208, 456–470 (2017)CrossRefGoogle Scholar
  25. 25.
    Luo, A.: An unsymmetrical motion in a horizontal impact oscillator. J. Vib. Acoust. 124, 420–426 (2002)CrossRefGoogle Scholar
  26. 26.
    Luo, A.: Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator. Chaos Solitons Fractals 19, 823–839 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.IMPEEHeriot-Watt UniversityEdinburghUK

Personalised recommendations