Nonlinear Dynamics

, Volume 98, Issue 3, pp 1659–1668 | Cite as

Chemical synaptic multiplexing enhances rhythmicity in neuronal networks

  • Srilena Kundu
  • Soumen Majhi
  • Dibakar GhoshEmail author
Original Paper


Real-world networks are rarely isolated; rather, they constitute a large number of elements interacting through complex topologies and oscillation is essential for their proper functioning. But degradation may come up naturally in such large systems that can severely affect the dynamical activity of the entire network. This mandates us to prescribe some remedies to overcome such deterioration. In this work, we demonstrate this scenario using a neuronal model organized in a framework of multiplex structure composed of a mixture of active and inactive neurons, while interacting via both electrical gap junction and chemical synapse. Multiplex architecture being very much prominent in cortical networks, we explore the simultaneous effect of the electrical and chemical synapses in the persistence of global rhythmicity of a multiplex neuronal network. Our results suggest that although electrical synapse reduces the dynamical performance of the network, chemical synapse through interlayer connection is highly efficient in reviving the rhythmicity of the network. Moreover, we investigate the effect of demultiplexing on the resilience of the network and show that chemical synaptic coupling can revive global rhythmicity under progressive demultiplexing as well. We also demonstrate this effectiveness of the chemical synapses for the case of reverse transition from global rest state to dynamism.


Neuronal systems Multiplex networks Dynamical robustness 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Strogatz, S.H.: Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life. Hyperion, New York (2004)Google Scholar
  3. 3.
    Ghosh, D., Bhattacharya, S.: Projective synchronization of new hyperchaotic system with fully unknown parameters. Nonlinear Dyn. 61, 11–21 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Yao, Z., Ma, J., Yao, Y., Wang, C.: Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn. 96, 205–217 (2019)Google Scholar
  5. 5.
    Majhi, S., Ghosh, D., Kurths, J.: Emergence of synchronization in multiplex networks of mobile Rössler oscillators. Phys. Rev. E 99, 012308 (2019)MathSciNetGoogle Scholar
  6. 6.
    Panaggio, M.J., Abrams, D.M.: Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100 (2019)Google Scholar
  8. 8.
    Koseka, A., Volkov, E., Kurths, J.: Oscillation quenching mechanisms: amplitude vs. oscillation death. Phys. Rep. 531, 173 (2013)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)Google Scholar
  10. 10.
    Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626 (2000)Google Scholar
  11. 11.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025 (2010)Google Scholar
  12. 12.
    Vespignani, A.: Complex networks: the fragility of interdependency. Nature 464, 984 (2010)Google Scholar
  13. 13.
    Gao, J., Barzel, B., Barabási, A.-L.: Universal resilience patterns in complex networks. Nature 530, 307–312 (2016)Google Scholar
  14. 14.
    Daido, H., Nakanishi, K.: Aging transition and universal scaling in oscillator networks. Phys. Rev. Lett. 93, 104101 (2004)Google Scholar
  15. 15.
    Daido, H., Nakanishi, K.: Aging and clustering in globally coupled oscillators. Phys. Rev. E 75, 056206 (2007)MathSciNetGoogle Scholar
  16. 16.
    Morino, K., Tanaka, G., Aihara, K.: Robustness of multilayer oscillator networks. Phys. Rev. E 83, 056208 (2011)Google Scholar
  17. 17.
    Tanaka, G., Morino, K., Aihara, K.: Dynamical robustness in complex networks: the crucial role of low-degree nodes. Sci. Rep. 2, 232 (2012)Google Scholar
  18. 18.
    Tanaka, G., Morino, K., Daido, H., Aihara, K.: Dynamical robustness of coupled heterogeneous oscillators. Phys. Rev. E 89, 052906 (2014)Google Scholar
  19. 19.
    Thakur, B., Sharma, D., Sen, A.: Time-delay effects on the aging transition in a population of coupled oscillators. Phys. Rev. E 90, 042904 (2014)Google Scholar
  20. 20.
    Sasai, T., Morino, K., Tanaka, G., Almendral, J.A., Aihara, K.: Robustness of oscillatory behavior in correlated networks. PLoS ONE 10, e0123722 (2015)Google Scholar
  21. 21.
    Ranta, E., Fowler, M.S., Kaitala, V.: Population synchrony in small-world networks. Proc. R. Soc. B 275, 435 (2008)Google Scholar
  22. 22.
    Gilarranz, L.J., Bascompte, J.: Spatial network structure and metapopulation persistence. J. Theor. Biol. 297, 11 (2012)Google Scholar
  23. 23.
    Kundu, S., Majhi, S., Sasmal, S.K., Ghosh, D., Rakshit, B.: Survivability of a metapopulation under local extinctions. Phys. Rev. E 96, 062212 (2017)Google Scholar
  24. 24.
    Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)MathSciNetGoogle Scholar
  25. 25.
    Ge, M., Jia, Y., Kirunda, J.B., Xu, Y., Shen, J., Lu, L., Liu, Y., Pei, Q., Zhan, X., Yang, L.: Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh–Rose neural network. Neurocomputing 320, 60–68 (2018)Google Scholar
  26. 26.
    Lu, L., Jia, Y., Kirunda, J.B., Xu, Y., Ge, M., Pei, Q., Yang, L.: Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. 95, 1673–1686 (2019)Google Scholar
  27. 27.
    Xu, Y., Jia, Y., Wang, H., Liu, Y., Wang, P., Zhao, Y.: Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn. 95, 3237–3247 (2019)Google Scholar
  28. 28.
    Ge, M., Jia, Y., Xu, Y., Lu, L., Wang, H., Zhao, Y.: Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network. Appl. Math. Comput. 352, 136–145 (2019)MathSciNetGoogle Scholar
  29. 29.
    Lisman, J., Buzsáki, G.: A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr. Bull. 34, 974–980 (2008)Google Scholar
  30. 30.
    Jalife, J., Gray, R.A., Morley, G.E., Davidenko, J.M.: Self-organization and the dynamical nature of ventricular fibrillation. Chaos 8, 79 (1998)zbMATHGoogle Scholar
  31. 31.
    Engel, A.K., Singer, W.: Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. 5, 16–25 (2001)Google Scholar
  32. 32.
    Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229 (2001)Google Scholar
  33. 33.
    Burrow, T.: The neurodynamics of behavior: a phylobiological foreword. Philos. Sci. 10, 271–288 (1943)Google Scholar
  34. 34.
    Ma, J., Yang, Z., Yang, L., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20, 639–659 (2019)Google Scholar
  35. 35.
    Xu, Y., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)Google Scholar
  36. 36.
    Ma, J., Zhang, G., Hayat, T., Ren, G.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95, 1585–1598 (2019)Google Scholar
  37. 37.
    Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)Google Scholar
  38. 38.
    Rakshit, S., Ray, A., Bera, B.K., Ghosh, D.: Synchronization and firing patterns of coupled Rulkov neuronal map. Nonlinear Dyn. 94, 785–805 (2018)Google Scholar
  39. 39.
    Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)Google Scholar
  40. 40.
    Levanova, T.A., Kazakov, A.O., Osipov, G.V., Kurths, J.: Dynamics of ensemble of inhibitory coupled Rulkov maps. Eur. Phys. J. Spec. Top. 225, 147–157 (2016)Google Scholar
  41. 41.
    Korotkov, A.G., Kazakov, A.O., Levanova, T.A., Osipov, G.V.: The dynamics of ensemble of neuron-like elements with excitatory couplings. Commun. Nonlinear Sci. Numer. Simul. 71, 38–49 (2019)MathSciNetGoogle Scholar
  42. 42.
    Morino, K., Tanaka, G., Aihara, K.: Efficient recovery of dynamic behavior in coupled oscillator networks. Phys. Rev. E 88, 032909 (2013)Google Scholar
  43. 43.
    Liu, Y., Zou, W., Zhan, M., Duan, J., Kurths, J.: Enhancing dynamical robustness in aging networks of coupled nonlinear oscillators. Europhys. Lett. 114, 40004 (2016)Google Scholar
  44. 44.
    Sun, Z., Ma, N., Xu, W.: Aging transition by random errors. Sci. Rep. 7, 42715 (2017)Google Scholar
  45. 45.
    Kundu, S., Majhi, S., Ghosh, D.: Resumption of dynamism in damaged networks of coupled oscillators. Phys. Rev. E 97, 052313 (2018)Google Scholar
  46. 46.
    Bera, B.K.: Low pass filtering mechanism enhancing dynamical robustness in coupled oscillatory networks. Chaos 29, 041104 (2019)MathSciNetGoogle Scholar
  47. 47.
    Kundu, S., Majhi, S., Karmakar, P., Ghosh, D., Rakshit, B.: Augmentation of dynamical persistence in networks through asymmetric interaction. Europhys. Lett. 123, 30001 (2018)Google Scholar
  48. 48.
    Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014)MathSciNetGoogle Scholar
  49. 49.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2, 203–271 (2014)Google Scholar
  50. 50.
    Domenico, M.D., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)Google Scholar
  51. 51.
    Nicosia, V., Bianconi, G., Latora, V., Barthelemy, M.: Growing multiplex networks. Phys. Rev. Lett. 111, 058701 (2013)Google Scholar
  52. 52.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821 (2002)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Cardillo, A., Zanin, M., Gómez-Gardeñes, J., Romance, M., Garcia del Amo, A., Boccaletti, S.: Modeling the multi-layer nature of the European air transport network: resilience and passengers re-scheduling under random failures. Eur. Phys. J. Spec. Top. 215, 23 (2013)Google Scholar
  54. 54.
    Brummitt, C.D., D’Souza, R.M., Leicht, E.A.: Suppressing cascades of load in interdependent networks. Proc. Natl. Acad. Sci. USA 109, E680 (2012)Google Scholar
  55. 55.
    Pilosof, S., Porter, M.A., Pascual, M., Kéfi, S.: The multilayer nature of ecological networks. Nat. Ecol. Evol. 1, 0101 (2017)Google Scholar
  56. 56.
    Bentley, B., Branicky, R., Barnes, C.L., Chew, Y.L., Yemini, E., Bullmore, E.T., Vtes, P.E., Schafer, W.R.: The multilayer connectome of Caenorhabditis elegans. PLoS Comput. Biol. 12, e1005283 (2016)Google Scholar
  57. 57.
    Battiston, F., Nicosia, V., Chavez, M., Latora, V.: Multilayer motif analysis of brain networks. Chaos 27, 047404 (2017)MathSciNetGoogle Scholar
  58. 58.
    Pereda, A.E.: Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250 (2014)Google Scholar
  59. 59.
    Rakshit, S., Bera, B.K., Ghosh, D.: Synchronization in a temporal multiplex neuronal hypernetwork. Phys. Rev. E 98, 032305 (2018)MathSciNetGoogle Scholar
  60. 60.
    Rakshit, S., Majhi, S., Bera, B.K., Sinha, S., Ghosh, D.: Time-varying multiplex network: intralayer and interlayer synchronization. Phys. Rev. E 96, 062308 (2017)Google Scholar
  61. 61.
    Rakshit, S., Bera, B.K., Ghosh, D., Sinha, S.: Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks. Phys. Rev. E 97, 052304 (2018)Google Scholar
  62. 62.
    Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27, 073109 (2017)MathSciNetGoogle Scholar
  63. 63.
    Majhi, S., Kapitaniak, T., Ghosh, D.: Solitary states in multiplex networks owing to competing interactions. Chaos 29, 013108 (2019)MathSciNetGoogle Scholar
  64. 64.
    Bassett, D.S., Bullmore, E.T.: Small-world brain networks. Neuroscientist 12, 512 (2006)Google Scholar
  65. 65.
    Bassett, D.S., Bullmore, E.T.: Small-world brain networks revisited. Neuroscientist 23, 499 (2017)Google Scholar
  66. 66.
    Sporns, O., Honey, C.J.: Small worlds inside big brains. Proc. Natl. Acad. Sci. USA 103, 19219 (2006)Google Scholar
  67. 67.
    Hilgetag, C.C., O’Neill, M.A., Young, M.P.: Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 71 (2000)Google Scholar
  68. 68.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature (London) 393, 440 (1998)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Physics and Applied Mathematics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations