Advertisement

Nonlinear Dynamics

, Volume 98, Issue 2, pp 1491–1500 | Cite as

Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation

  • Xue Guan
  • Wenjun LiuEmail author
  • Qin Zhou
  • Anjan Biswas
Original Paper
  • 74 Downloads

Abstract

Darboux transformation is an efficient method for solving different nonlinear partial differential equations. In this paper, on the basis of a Lie super-algebras, a generalized super-NLS-mKdV equation is solved by the Darboux transformation. The analytic solutions are presented with the help of symbolic computation. Besides, two special cases are given to make the solution intuitive. Dynamic properties of solitons are also discussed.

Keywords

Solitons Lie super-algebra Darboux transformation Analytic solution Super-NLS-mKdV equation 

Notes

Acknowledgements

The work of Wenjun Liu was supported by the National Natural Science Foundation of China (Grant Nos. 11674036 and 11875008), by the Beijing Youth Top-notch Talent Support Program (Grant No. 2017000026833ZK08) and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant No. IPOC2017ZZ05).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wazwaz, A.M.: A two-mode modified KdV equation with multiple soliton solutions. Appl. Math. Lett. 70, 1–6 (2017)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Wazwaz, A.M.: Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89, 1727–1732 (2017)MathSciNetGoogle Scholar
  3. 3.
    Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017–3021 (2017)MathSciNetGoogle Scholar
  4. 4.
    Wazwaz, A.M.: Multiple soliton solutions and other exact solutions for a two-mode KdV equation. Math. Methods Appl. Sci. 40, 2277–2283 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Wazwaz, A.M.: A study on a two-wave mode Kadomtsev–Petviashvili equation: conditions for multiple soliton solutions to exist. Math. Methods Appl. Sci. 40, 4128–4133 (2017)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gürses, M., ömer, Oguz: A super AKNS scheme. Phys. Lett. A 108(9), 437–440 (1985)MathSciNetGoogle Scholar
  8. 8.
    Mathieu, P.: Super symmetric extension of the Korteweg–de Vries equation. J. Math. Phys. 29(11), 2499–2506 (1988)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Popowicz, Z.: The fully supersymmetric AKNS equations. J. Phys. A Math. Gen. 23, 1127–1136 (1990)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Geng, X.G., Wu, L.H.: A super extension of Kaup–Newell hierarchy. Commun. Theor. Phys. 54, 594–598 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Aratyn, H., Nissimov, E., Pacheva, S.: Supersymmetric Kadomtsev–Petviashvili hierarchy: ghost symmetry structure, reductions, and Darboux–Bäcklund solutions. J. Math. Phys. 40, 2922–2932 (1999)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hu, X.B.: An approach to generate superextensions of integrable systems. J. Phys. A Math. Gen. 30, 619–632 (1997)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ma, W.X., He, J.H., Qin, Z.Y.: A supertrace identity and its applications to superintegrable systems. J. Math. Phys. 49, 033511–033523 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Zhang, N., Xia, T.C., Fan, E.G.: A Riemann–Hilbert approach to the Chen–Lee–Liu equation on the half line. Acta Math. Appl. Sin. 34(3), 493–515 (2018)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Biswas, A., Kara, A.H., et al.: Conservation laws for cubic–quartic optical solitons in Kerr and power law media. Optik 145, 650–654 (2017)Google Scholar
  16. 16.
    Zhang, N., Xia, T.C., Jin, Q.Y.: N-fold Darboux transformation of the discrete Ragnisco–Tu system. Adv. Differ. Equ. 2018, 302 (2018)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Biswas, A., Ullah, M.Z., et al.: Resonant optical solitons with quadratic–cubic nonlinearity by semi-inverse variational principle. Optik 145, 18–21 (2017)Google Scholar
  18. 18.
    Tao, M.S., Zhang, N., Gao, D.Z., Yang, H.W.: Symmetry analysis for three-dimensional dissipation Rossby waves. Adv. Differ. Equ. 2018, 300 (2018)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Biswas, A., Zhou, Q., et al.: Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations. Optik 145, 14–17 (2017)Google Scholar
  20. 20.
    Gu, J.Y., Zhang, Y., Dong, H.H.: Dynamic behaviors of interaction solutions of (3+1)-dimensional shallow mater wave equation. Comput. Math. Appl. 76(6), 1408–1419 (2018)MathSciNetGoogle Scholar
  21. 21.
    Biswas, A., Triki, H., et al.: Cubic–quartic optical solitons in Kerr and power law media. Optik 144, 357–362 (2017)Google Scholar
  22. 22.
    Liu, Y., Dong, H.H., Zhang, Y.: Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows. Anal. Math. Phys. 2018, 1–17 (2018)Google Scholar
  23. 23.
    Biswas, A., Zhou, Q., et al.: Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle. Optik 143, 131–134 (2017)Google Scholar
  24. 24.
    Guo, M., Zhang, Y., Wang, M., Chen, Y.D., Yang, H.W.: A new ZK-ILW equation for algebraic gravity solitary waves in finite depth stratified atmosphere and the research of squall lines formation mechanism. Comput. Math. Appl. 143, 3589–3603 (2018)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Biswas, A., Zhou, Q., et al.: Perturbation theory and optical soliton cooling with anti-cubic nonlinearity. Optik 142, 73–76 (2017)Google Scholar
  26. 26.
    Lu, C., Fu, C., Yang, H.W.: Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions. Appl. Math. Comput. 327, 104–116 (2018)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Zhao, B.J., Wang, R.Y., Sun, W.J., Yang, H.W.: Combined ZK-mZK equation for Rossby solitary waves with complete Coriolis force and its conservation laws as well as exact solutions. Adv. Differ. Equ. 2018, 42 (2018)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Yang, H.W., Chen, X., Guo, M., Chen, Y.D.: A new ZK–BO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property. Nonlinear Dyn. 91, 2019–2032 (2018)zbMATHGoogle Scholar
  29. 29.
    Boutet de Monvel, A., Shepelsky, D.: A Riemann–Hilbert approach for the Degasperis–Procesi equation. Nonlinearity 26, 2081–2107 (2013)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ma, W.X., Dong, H.H.: Modeling Riemann–Hilbert problems to get soliton solutions. Math. Model. Appl. 6, 16–25 (2017)Google Scholar
  31. 31.
    Hu, B.B., Xia, T.C., Ma, W.X.: Riemann–Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg–de Vries equation on the half-line. App. Math. Comput. 332, 148–159 (2018)MathSciNetGoogle Scholar
  32. 32.
    Guo, B.L., Liu, N., Wang, Y.F.: A Riemann–Hilbert approach for a new type coupled nonlinear Schrödinger equations. J. Math. Anal. Appl. 459, 145–158 (2018)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Hirota, R.: A new form of Backlund transformations and its relation to the inverse scattering problem. Prog. Theor. Phys. 52, 1498–1512 (1974)zbMATHGoogle Scholar
  34. 34.
    Zhang, Y., Chen, D.Y.: Bäcklund transformation and soliton solutions for the shallow water waves equation. Chaos Solitons Fractals 20, 343–351 (2004)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation and its Set Application in Soliton Theory. Shanghai Science and Technology Education Press, Shanghai (1999)Google Scholar
  36. 36.
    Deng, S.F., Qin, Z.Y.: Darboux and Backlund transformations for the nonisospectral KP equation. Phys. Lett. A 357, 467–474 (2006)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  38. 38.
    Carstea, A.S.: Extension of the bilinear formalism to supersymmetric KdV-type equations. Nonlinearity 13, 1645–1656 (2000)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Xu, X.X., Sun, Y.P.: Two symmetry constraints for a generalized Dirac integrable hierarchy. J. Math. Anal. Appl. 458, 1073–1090 (2018)MathSciNetzbMATHGoogle Scholar
  40. 40.
    He, J.H., et al.: Binary nonlinearization of the super AKNS system. Mod. Phys. Lett. B 22, 275–288 (2008)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Yu, J., Han, J.W., He, J.H.: Binary nonlinearization of the super AKNS system under an implicit symmetry constraint. J. Phys. A Math. Theor. 42, 465201–465211 (2009)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Falqui, G., Reina, C., Zampa, A.: Super KP equations and Darboux transformations: another perspective on the Jacobian Super KP hierarchy. J. Geom. Phys. 35, 239–272 (2000)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Liu, Q.P.: Darboux transformations for super-symmetric KP hierarchies. Phys. Lett. B 485, 293–300 (2000)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Zhou, R.G.: A Darboux transformation of the \(sl(2|1)\) super KdV hierarchy and a super lattice potential KdV equation. Phys. Lett. A 378, 1816–1819 (2014)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Yu, F.J.: Darboux transformations for super-Schrödinger equation, super-Dirac equation and their exact solutions. Nonlinear Dyn. 88, 1257–1271 (2017)zbMATHGoogle Scholar
  46. 46.
    Mao, H., Liu, Q.P.: Bäcklund–Darboux transformations and discretizations of \(\text{ N } = 2\) \(\text{ a } = -\,2\) supersymmetric KdV equation. Phys. Lett. A 381, 253–258 (2018)zbMATHGoogle Scholar
  47. 47.
    Guo, F.K.: NLS-MKdV hierarchy of equations that are integrable and in the Hamiltonian forms. Acta Math. Sin. Chin. Ser. 40, 801–804 (1997)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Zhao, Q.L., et al.: The finite-dimensional super integrable system of a super NLS-mKdV equation. Commun. Nonlinear Sci. Numer. Simul. 17, 4044–4052 (2012)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Wei, H.Y., Xia, T.C.: A integrable generalized super-NLS-mKdV hierarchy, its self-consistent sources, and conservation laws. Adv. Math. Phys. 2018, 1–9 (2018)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications, and School of ScienceBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China
  2. 2.School of Electronics and Information EngineeringWuhan Donghu UniversityWuhanPeople’s Republic of China
  3. 3.Department of Physics, Chemistry and MathematicsAlabama A & M UniversityNormalUSA
  4. 4.Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.Department of Mathematics and StatisticsTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations