Nonlinear Dynamics

, Volume 98, Issue 2, pp 943–951 | Cite as

Emergent preeminence of selfishness: an anomalous Parrondo perspective

  • Jin Ming Koh
  • Kang Hao CheongEmail author
Original paper


A minimalistic multi-agent Parrondo’s game structure with branching dependent on local capital spread was previously introduced, indicating that stochastically mixing two losing games can produce winning outcomes with bounded capital variance among players. Using a similar game structure, we unveil further intriguing behavior that a bias toward selfish exploitative behavior, involving redistribution of capital from the poor to the rich, leads to counterintuitive superior capital gains than cooperative behaviors. Inter-agent interactions of exploitative nature not only maximizes capital growth in winning scenarios, but also expands the parameter space over which the Parrondo effect may manifest. These novel findings suggest a link between growth maximization and inequality that could be relevant to socioeconomic, ecological, and population dynamics modeling. We also present a theoretical framework for enhanced accuracy in the prediction of ensemble capital statistics.


Parrondo’s paradox Social dynamics Game theory Nonlinear Selfishness 



This project was supported by the SUTD Start-up Research Grant (SRG).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11071_2019_5237_MOESM1_ESM.pdf (252 kb)
Supplementary material 1 (pdf 252 KB)


  1. 1.
    West, S.A., Gardner, A., Shuker, D.M., Reynolds, T., Burton-Chellow, M., Sykes, E.M., Guinnee, M.A., Griffin, A.S.: Cooperation and the scale of competition in humans. Curr. Biol. 16, 1103 (2006)Google Scholar
  2. 2.
    Wilson, D.S., Near, D.C., Miller, R.R.: Individual differences in machiavellianism as a mix of cooperative and exploitative strategies. Evol. Hum. Behav. 19, 203 (1998)Google Scholar
  3. 3.
    Simon, H.A.: Theories of decision-making in economics and behavioral science. Am. Econ. Rev. 49, 253 (1959)Google Scholar
  4. 4.
    Smith, J.M.: Game theory and the evolution of behaviour. Behav. Brain Sci. 7, 95 (1984)Google Scholar
  5. 5.
    Harmer, G.P., Abbott, D.: Losing strategies can win by Parrondo’s paradox. Nature 402, 864 (1999a)Google Scholar
  6. 6.
    Harmer, G.P., Abbott, D.: Parrondo’s paradox. Stat. Sci. 14, 206 (1999b)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Parrondo, J.M.R., Harmer, G.P., Abbott, D.: New paradoxical games based on Brownian ratchets. Phys. Rev. Lett. 85, 5226 (2000)Google Scholar
  8. 8.
    Ajdari, A., Prost, J.: Drift induced by a periodic potential of low symmetry: pulsed dielectrophoresis. C. R. Acad. Sci. Paris Sér. 315, 1635 (1993)Google Scholar
  9. 9.
    Rousselet, J., Salome, L., Ajdari, A., Prostt, J.: Directional motion of brownian particles induced by a periodic asymmetric potential. Nature 370, 446 (1994)Google Scholar
  10. 10.
    Cao, F.J., Dinis, L., Parrondo, J.M.R.: Feedback control in a collective flashing ratchet. Phys. Rev. Lett. 93, 040603 (2004)Google Scholar
  11. 11.
    Toral, R.: Cooperative Parrondo’s games. Fluct. Noise Lett. 01, L7 (2001)MathSciNetGoogle Scholar
  12. 12.
    Toral, R.: Capital redistribution brings wealth by Parrondo’s paradox. Fluct. Noise Lett. 02, L305 (2002)MathSciNetGoogle Scholar
  13. 13.
    Danca, M.-F., Fečkan, M., Romera, M.: Generalized form of Parrondo’s paradoxical game with applications to chaos control. Int. J. Bifurc. Chaos 24, 1450008 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Chau, N.P.: Controlling chaos by periodic proportional pulses. Phys. Lett. A 234, 193 (1997)Google Scholar
  15. 15.
    Allison, A., Abbott, D.: Control systems with stochastic feedback. Chaos 11, 715 (2001)zbMATHGoogle Scholar
  16. 16.
    Danca, M.-F., Lai, D.: Parrodo’s game model to find numerically stable attractors of a tumour growth model. Int J Bifurc Chaos 22, 1250258 (2012)zbMATHGoogle Scholar
  17. 17.
    Danca, M.-F., Tang, W.K.S.: Parrondo’s paradox for chaos control and anticontrol of fractional-order systems. Chin. Phys. B 25, 010505 (2016)Google Scholar
  18. 18.
    Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038 (1987)MathSciNetGoogle Scholar
  19. 19.
    Pinsky, R., Scheutzow, M.: Some remarks and examples concerning the transient and recurrence of random diffusions. Ann. Inst. Henri Poincaré B 28, 519 (1992)zbMATHGoogle Scholar
  20. 20.
    Harmer, G.P., Abbott, D., Taylor, P.G., Pearce, C.E.M., Parrondo, J.M.R.: Information entropy and Parrondo’s discrete-time ratchet. AIP Conf. Proc. 502, 544 (2000)zbMATHGoogle Scholar
  21. 21.
    Pearce, C.E.M.: Entropy, Markov information sources and Parrondo games. AIP Conf. Proc. 511, 207 (2000)Google Scholar
  22. 22.
    Cheong, K.H., Saakian, D.B., Zadourian, R.: Allison mixture and the two-envelope problem. Phys. Rev. E 96, 062303 (2017)Google Scholar
  23. 23.
    Wolf, D.M., Vazirani, V.V., Arkin, A.P.: Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234, 227 (2005)MathSciNetGoogle Scholar
  24. 24.
    Libby, E., Conlin, P.L., Kerr, B., Ratcliff, W.C.: Stabilizing multicellularity through ratcheting. Philos. Trans. R. Soc. B 371 (2016). Google Scholar
  25. 25.
    Cheong, K.H., Tan, Z.X., Xie, N.-G., Jones, M.C.: A paradoxical evolutionary mechanism in stochastically switching environments. Sci. Rep. 6, 34889 (2016). CrossRefGoogle Scholar
  26. 26.
    Tan, Z.X., Cheong, K.H.: Nomadic-colonial life strategies enable paradoxical survival and growth despite habitat destruction. eLife 6, e21673 (2017). CrossRefGoogle Scholar
  27. 27.
    Koh, J.M., Xie, N.-G., Cheong, K.H.: Nomadic-colonial switching with stochastic noise: subsidence-recovery cycles and long-term growth. Nonlinear Dyn. 94, 1467 (2018)Google Scholar
  28. 28.
    Cheong, K.H., Koh, J.M., Jones, M.C.: Multicellular survival as a consequence of parrondo’s paradox. Proc. Natl. Acad. Sci 115, E5258–E5259 (2018). Google Scholar
  29. 29.
    Cheong, K.H., Koh, J.M., Jones, M.C.: Paradoxical survival: Examining the parrondo effect across biology. BioEssays 41, 1900027 (2019). CrossRefGoogle Scholar
  30. 30.
    Meyer, D.A., Blumer, H.: Parrondo games as lattice gas automata. J. Stat. Phys. 107, 225 (2002)zbMATHGoogle Scholar
  31. 31.
    Flitney, A.P., Abbott, D., Johnson, N.F.: Quantum walks with history dependence. J. Phys. A Math. Gen. 37, 7581 (2004)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Rajendran, J., Benjamin, C.: Implementing Parrondo’s paradox with two-coin quantum walks. Open Sci. (2018). Google Scholar
  33. 33.
    Rajendran, J., Benjamin, C.: Playing a true Parrondo’s game with a three-state coin on a quantum walk. EPL (Europhys. Lett.) 122, 40004 (2018)Google Scholar
  34. 34.
    Flitney, A.P., Abbott, D.: Quantum models of Parrondo’s games. Phys. A 324, 152 (2003)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Flitney, A.P., Abbott, D.: An introduction to quantum game theory. Fluct. Noise Lett. 02, R175 (2002)MathSciNetGoogle Scholar
  36. 36.
    Lee, C.F., Johnson, N.F., Rodriguez, F., Quiroga, L.: Quantum coherence, correlated noise and Parrondo Games. Fluct. Noise Lett. 02, L293 (2002)MathSciNetGoogle Scholar
  37. 37.
    Lee, C.F., Johnson, N.F.: Exploiting randomness in quantum information processing. Phys. Lett. A 301, 343 (2002)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Banerjee, S., Chandrashekar, C.M., Pati, A.K.: Enhancement of geometric phase by frustration of decoherence: a Parrondo-like effect. Phys. Rev. A 87, 042119 (2013)Google Scholar
  39. 39.
    de Franciscis, S., d’Onofrio, A.: Spatiotemporal bounded noises and transitions induced by them in solutions of the real Ginzburg–Landau model. Phys. Rev. E 86, 021118 (2012)Google Scholar
  40. 40.
    Pejic, M.: Quantum Bayesian networks with application to games displaying Parrondo’s paradox. (2015), ArXiv e-prints arXiv:1503.08868
  41. 41.
    Di Crescenzo, A.: A Parrondo paradox in reliability theory. Math. Sci. 32, 17 (2007)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Zhang, Y., Luo, G.: A special type of codimension two bifurcation and unusual dynamics in a phase-modulated system with switched strategy. Nonlinear Dyn. 67, 2727–2734 (2012)MathSciNetGoogle Scholar
  43. 43.
    Zhang, Y.: Switching-induced Wada basin boundaries in the Hénon map. Nonlinear Dyn. 73, 2221–2229 (2013)zbMATHGoogle Scholar
  44. 44.
    Danca, M.-F.: Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo’s paradox. Commun. Nonlinear Sci. Numer. Simul. 18, 500–510 (2013)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Koh, J.M., Cheong, K.H.: Automated electron-optical system optimization through switching Levenberg–Marquardt algorithms. J. Electron Spectrosc. Relat. Phenom. 227, 31 (2018)Google Scholar
  46. 46.
    Koh, J.M., Cheong, K.H.: New doubly-anomalous Parrondo’s games suggest emergent sustainability and inequality. Nonlinear Dyn. 96, 257 (2019)Google Scholar
  47. 47.
    Triandis, H.C.: Individualism–Collectivism and Personality. J. Personal. 69, 907 (2001)Google Scholar
  48. 48.
    Hui, C.H.: Measurement of individualism–collectivism. J. Res. Personal. 22, 17 (1988)Google Scholar
  49. 49.
    Mihailovic, Z., Rajkovic, M.: Synchronous cooperative Parrondo’s games. Fluct. Noise Lett. 03, 389 (2003)MathSciNetGoogle Scholar
  50. 50.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A 272, 173 (1999)Google Scholar
  52. 52.
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)Google Scholar
  53. 53.
    Kasthurirathna, D., Piraveenan, M.: Emergence of scale-free characteristics in socio-ecological systems with bounded rationality. Sci. Rep. 5, 10448 (2015)Google Scholar
  54. 54.
    Gao, J., Barzel, B., Barabasi, A.L.: Universal resilience patterns in complex networks. Nature 530, 307 (2016)Google Scholar
  55. 55.
    Amaral, L.A.N., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. 97, 11149 (2000)Google Scholar
  56. 56.
    Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debr. 6, 290 (1959)zbMATHGoogle Scholar
  57. 57.
    Gómez-Gardeñes, J., Moreno, Y.: From scale-free to Erdos–Rényi networks. Phys. Rev. E 73, 056124 (2006)Google Scholar
  58. 58.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440 (1998)zbMATHGoogle Scholar
  59. 59.
    Ye, Y., Cheong, K.H., Cen, Y.-W., Xie, N.-G.: Effects of behavioral patterns and network topology structures on Parrondo’s paradox. Sci. Rep. 6, 37028 (2016). CrossRefGoogle Scholar
  60. 60.
    Miller, S., Diamond, J.: A new world of differences. Nature 441, 411 (2006)Google Scholar
  61. 61.
    Sargent, M.: Why inequality is fatal. Nature 458, 1109 (2009)Google Scholar
  62. 62.
    Bechhoefer, J.: Feedback for physicists: a tutorial essay on control. Rev. Mod. Phys. 77, 783 (2005)Google Scholar
  63. 63.
    Saavedra, S., Reed-Tsochas, F., Uzzi, B.: A simple model of bipartite cooperation for ecological and organizational networks. Nature 457, 463 (2008)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Science and Math ClusterSingapore University of Technology and DesignSingaporeSingapore

Personalised recommendations