Advertisement

Nonlinear Dynamics

, Volume 98, Issue 1, pp 375–394 | Cite as

Global sensitivity analysis for the design of nonlinear identification experiments

  • Alana LundEmail author
  • Shirley J. Dyke
  • Wei Song
  • Ilias Bilionis
Original Paper
  • 218 Downloads

Abstract

Bayesian inference techniques have been used extensively in recent years for parameter estimation in nonlinear systems. Despite the many advances made in the field, highly nonlinear systems can still be challenging to identify. Of key interest is the challenge in establishing the identifiability of the model with respect to various excitation signals and, in particular, doing so prior to the collection of experimental data. Global sensitivity analysis techniques provide a perspective on this problem that is well-suited to informing the design of identification experiments for use with Bayesian inference techniques. These methods quantify the relative importance of the parameters to the model response by decomposing the variance of the response into contributions from the respective parameters. The sensitivities obtained provide a valuable indication of the information available for parameter estimation in the response of a system to a particular excitation. In this study, nonlinear model parameters are identified based on experimental responses from a nonlinear energy sink device with the unscented Kalman filter. The experimental identification results are compared with those of a Sobol’ sensitivity analysis on the system model to demonstrate how global sensitivity analysis can be used as a method to preselect experimental excitations for use with Bayesian inference techniques.

Keywords

Sobol’ sensitivity analysis Design of experiments System identification Nonlinear energy sink Unscented Kalman filter Identifiability 

Notes

Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1333468. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors would also like to acknowledge the work of Christian Silva, who designed and built the NES device used in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Huang, Y., Beck, J.L., Li, H.: Hierarchical sparse Bayesian learning for structural damage detection: theory, computation and application. Struct. Saf. 64, 37–53 (2017)CrossRefGoogle Scholar
  2. 2.
    Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 303–315 (2007)CrossRefGoogle Scholar
  3. 3.
    Bharathi Priya, C., Gopalakrishnan, N.: Parameter identification of long stroke and short stroke MR damper for its use in semi-active vibration control. J. Inst. Eng. Ser. A 97, 405–414 (2016)CrossRefGoogle Scholar
  4. 4.
    Caravani, P., Watson, M.L., Thomson, W.T.: Recursive least-squares time domain identification of structural parameters. J. Appl. Mech. 44, 135–140 (1977)CrossRefGoogle Scholar
  5. 5.
    Yang, J.N., Huang, H.: Sequential non-linear least-square estimation for damage identification of structures with unknown inputs and unknown outputs. Int. J. Non Linear Mech. 42, 789–801 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Masri, S.F., Caughey, T.K.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46, 433–447 (1979)CrossRefGoogle Scholar
  7. 7.
    Xu, B., He, J., Masri, S.F.: Data-based model-free hysteretic restoring force and mass identification for dynamic systems. Comput. Civ. Infrastruct. Eng. 30, 2–18 (2015)CrossRefGoogle Scholar
  8. 8.
    Yun, C.-B., Shinozuka, M.: Identification of nonlinear structural dynamic systems. J. Struct. Mech. 8, 187–203 (1980)CrossRefGoogle Scholar
  9. 9.
    Julier, S.J.: A skewed approach to filtering. In: Signal and Data Processing of Small Targets, pp 271–282. International Society for Optics and Photonics (1998)Google Scholar
  10. 10.
    Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. (Radar Signal Process.) 140, 107–113 (1993)CrossRefGoogle Scholar
  11. 11.
    Chatzi, E.N., Smyth, A.: The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Struct. Control Health Monit. 16, 99–123 (2009)CrossRefGoogle Scholar
  12. 12.
    Muto, M., Beck, J.L.: Bayesian updating and model class selection for hysteretic structural models using stochastic simulation. J. Vib. Control 14, 7–34 (2008)CrossRefGoogle Scholar
  13. 13.
    Yuen, K.-V., Mu, H.-Q.: Real-time system identification: an algorithm for simultaneous model class selection and parametric identification. Comput. Civ. Infrastruct. Eng. 30, 785–801 (2015)CrossRefGoogle Scholar
  14. 14.
    Worden, K., Hensman, J.J.: Parameter estimation and model selection for a class of hysteretic systems using Bayesian inference. Mech. Syst. Signal Process. 32, 153–169 (2012)CrossRefGoogle Scholar
  15. 15.
    Miao, H., Xia, X., Perelson, A.S., Wu, H.: On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Rev. 53, 3–39 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Olivier, A., Smyth, A.W.: On the performance of online parameter estimation algorithms in systems with various identifiability properties. Front. Built Environ. 3, 1–18 (2017)CrossRefGoogle Scholar
  17. 17.
    Chatzis, M.N., Chatzi, E.N., Smyth, A.W.: On the observability and identifiability of nonlinear structural systems. Struct. Control Health Monit. 22, 574–593 (2015)CrossRefGoogle Scholar
  18. 18.
    Bellman, R., Astrom, K.J.: On structural identifiability. Math. Biosci. 7, 329–339 (1970)CrossRefGoogle Scholar
  19. 19.
    Ljung, L., Glad, T.: On global identifiability for arbitrary model parametrizations. Automatica 30, 265–276 (1994)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Diop, S., Fliess, M.: Nonlinear observability, identifiability, and persistent trajectories. In: Proceedings of the 30th Conference on Decision and Control, pp. 714–719 (1991)Google Scholar
  21. 21.
    Chis, O.-T., Banga, J.R., Balsa-Canto, E.: Structural identifiability of systems biology models: a critical comparison of methods. PLoS ONE 6, 27755 (2011)CrossRefGoogle Scholar
  22. 22.
    Walter, E., Lecourtier, Y.: Global approaches to identifiability testing for linear and nonlinear state space models. Math. Comput. Simul. 24, 472–482 (1982)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pohjanpalo, H.: System identifiability based on the power series expansion of the solution. Math. Biosci. 41, 21–33 (1978)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bellu, G., Saccomani, M.P., Audoly, S., D’angì, L.: DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput. Methods Programs Biomed. 88, 52–61 (2007)CrossRefGoogle Scholar
  25. 25.
    Chis, O.-T., Banga, J.R., Balsa-Canto, E.: GenSSI: a software toolbox for structural identifiability analysis of biological models. Bioinformatics 27, 2610–2611 (2011)Google Scholar
  26. 26.
    Meshkat, N., Er-zhen Kuo, C., DiStefano III, J.: On finding and using identifiable parameter combinations in nonlinear dynamic systems biology models and COMBOS: a novel web implementation. PLoS ONE 9, 110261 (2014)CrossRefGoogle Scholar
  27. 27.
    Chis, O.-T., Villaverde, A.F., Banga, J.R., Balsa-Canto, E.: On the relationship between sloppiness and identifiability. Math. Biosci. 282, 147–161 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Margaria, G., Riccomagno, E., White, L.J.: Structural identifiability analysis of some highly structured families of statespace models using differential algebra. J. Math. Biol. 49, 433–454 (2004)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kabanikhin, S.I., Voronov, D.A., Grodz, A.A., Krivorotko, O.I.: Identifiability of mathematical models in medical biology. Russ. J. Genet. Appl. Res. 6, 838–844 (2016)CrossRefGoogle Scholar
  30. 30.
    Grandjean, T.R.B., McGordon, A., Jennings, P.A.: Structural identifiability of equivalent circuit models for Li-ion batteries. Energies 10, 1–16 (2017)CrossRefGoogle Scholar
  31. 31.
    Miao, H., et al.: Modeling and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-cytometry-based growth competition experiments. Bull. Math. Biol. 70, 1749–1771 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Rodriguez-Fernandez, M., Mendes, P., Banga, J.R.: A hybrid approach for efficient and robust parameter estimation in biochemical pathways. BioSystems 83, 248–265 (2006)CrossRefGoogle Scholar
  33. 33.
    Saltelli, A., Chan, K., Scott, E.M. (eds.): Sensitivity Analysis. Wiley, New York (2000)zbMATHGoogle Scholar
  34. 34.
    Quaiser, T., Mönnigmann, M.: Systematic identifiability testing for unambiguous mechanistic modeling—application to JAK-STAT, MAP kinase, and NF-\(\kappa \)B signaling pathway models. BMC Syst. Biol. 3, 1–21 (2009)CrossRefGoogle Scholar
  35. 35.
    Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)CrossRefGoogle Scholar
  36. 36.
    Sobol’, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Cukier, R.I., Fortuin, C.M., Shuler, K.E., Petschek, A.G., Schaibly, J.H.: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I: Theory. J. Chem. Phys. 59, 3873–3878 (1973)CrossRefGoogle Scholar
  38. 38.
    Cukier, R.I., Levine, H.B., Shuler, K.E.: Review nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys. 26, 1–42 (1978)CrossRefGoogle Scholar
  39. 39.
    Saltelli, A., et al.: Global Sensitivity Analysis: The Primer. Wiley, New York (2008)zbMATHGoogle Scholar
  40. 40.
    Saltelli, A., Tarantola, S., Chan, K.P.: A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41, 39–56 (1999)CrossRefGoogle Scholar
  41. 41.
    Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297 (2002)CrossRefGoogle Scholar
  42. 42.
    Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68, 34–41 (2001)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. 68, 42–48 (2001)MathSciNetCrossRefGoogle Scholar
  44. 44.
    McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non Linear Mech. 40, 891–899 (2005)CrossRefGoogle Scholar
  45. 45.
    Nucera, F., Mcfarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: computational results. J. Sound Vib. 329, 2973–2994 (2010)CrossRefGoogle Scholar
  46. 46.
    Green, P.L., Worden, K., Atallah, K., Sims, N.D.: The effect of Duffing-type non-linearities and Coulomb damping on the response of an energy harvester to random excitations. J. Intell. Mater. Syst. Struct. 23, 2039–2054 (2012)CrossRefGoogle Scholar
  47. 47.
    Wierschem, N.E.: Targeted energy transfer using nonlinear energy sinks for the attenuation of transient loads on building structures. University of Illinois at Urbana-Champaign (2014)Google Scholar
  48. 48.
    Keyence.: Model LK-G157 Technical Specifications (2019)Google Scholar
  49. 49.
    PCB Piezotronics.: Model 3711D1FA20G DC Accelerometer Installation and Operating Manual (2013)Google Scholar
  50. 50.
    Lund, A., Silva, C., Dyke, S.J., Song, W., Bilionis, I.: Response of a prototype nonlinear energy sink device to various base excitations. DesignSafe-CI (2019).  https://doi.org/10.17603/ds2-nh34-e513 CrossRefGoogle Scholar
  51. 51.
    Särkkä, S.: On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans. Autom. Control 52, 1631–1641 (2007)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Srang, S., Yamakita, M.: On the estimation of systems with discontinuities using continuous-discrete unscented Kalman filter. In: Proceedings of the American Control Conference, pp. 457–463 (2014).  https://doi.org/10.1109/ACC.2014.6858988
  53. 53.
    Sobol’, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Sobol’, I.M.: A Primer for the Monte Carlo Method. CRC Press, Boca Raton (1994)zbMATHGoogle Scholar
  55. 55.
    Herman, J., Usher, W.: SaLib: an open-source Python library for sensitivity analysis. J. Open Source Softw. 2, 9 (2017)CrossRefGoogle Scholar
  56. 56.
    Julier, S.J., Uhlmann, J.K. Durrant-Whyte, H.F.: A new approach for filtering nonlinear systems. In: Proceedings of American Control Conference, pp. 1628–1632 (1995).  https://doi.org/10.1109/ACC.1995.529783
  57. 57.
    Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, pp. 153–158. IEEE (2000)Google Scholar
  58. 58.
    Mariani, S., Ghisi, A.: Unscented Kalman filtering for nonlinear structural dynamics. Nonlinear Dyn. 49, 131–150 (2007)CrossRefGoogle Scholar
  59. 59.
    Chatzi, E.N., Smyth, A.W., Masri, S.F.: Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty. Struct. Saf. 32, 326–337 (2010)CrossRefGoogle Scholar
  60. 60.
    Omrani, R., Hudson, R.E., Taciroglu, E.: Parametric identification of nondegrading hysteresis in a laterally and torsionally coupled building using an unscented Kalman filter. J. Eng. Mech. 139, 452–468 (2013)CrossRefGoogle Scholar
  61. 61.
    Julier, S.J., Uhlmann, J.K.: Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations. In: American Control Conference, pp. 887–892. IEEE (2002)Google Scholar
  62. 62.
    Olivier, A., Smyth, A.W.: A marginalized unscented Kalman filter for efficient parameter estimation with applications to finite element models. Comput. Methods Appl. Mech. Eng. 339, 615–643 (2018)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Mansouri, M., Onur, A., Hazem, N., Mohamed, N.: Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system. J. Civ. Struct. Health Monit. 5, 493–508 (2015)CrossRefGoogle Scholar
  64. 64.
    Sarkka, S.: Bayesian Filtering and Smoothing. Cambridge University Press, Cambridge (2013).  https://doi.org/10.1017/CBO9781139344203 CrossRefzbMATHGoogle Scholar
  65. 65.
    Haug, A.J.: Bayesian Estimation and Tracking: A Practical Guide. Wiley, New York (2012)CrossRefGoogle Scholar
  66. 66.
    Wu, M., Smyth, A.W.: Application of the unscented Kalman filter for real-time nonlinear structural system identification. Struct. Control Health Monit. 14, 971–990 (2007)CrossRefGoogle Scholar
  67. 67.
    Sivia, D.S., Skilling, J.: Data Analysis: A Bayesian Tutorial. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  68. 68.
    Worden, K.: Data processing and experiment design for the restoring force surface methods, part II: Choice of excitation signal. Mech. Syst. Signal Process. 4, 321–344 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.Purdue UniversityWest LafayetteUSA
  3. 3.University of AlabamaTuscaloosaUSA

Personalised recommendations