Theoretical modeling and numerical solution methods for flexible multibody system dynamics
- 488 Downloads
Abstract
Flexible multibody system dynamics (MSD) is one of the hot spots and difficulties in modern mechanics. It provides a powerful theoretical tool and technical support for dynamic performance evaluation and optimization design of a large number of complex systems in many engineering fields, such as machinery, aviation, aerospace, weapon, robot and biological engineering. How to find an efficient accurate dynamics modeling method and its stable reliable numerical solving algorithm are the two core problems of flexible MSD. In this paper, the research status of modeling methods of flexible MSD in recent years is summarized first, including the selection of reference frames, the flexible body’s kinematics descriptions, the deductions of dynamics equation, the model reduction techniques and the modeling methods of the contact/collision, uncertainty and multi-field coupling problems. Then, numerical solution technologies and their latest developments of flexible MSD are discussed in detail. Finally, the future research directions of modeling and numerical computation of flexible MSD are briefly prospected.
Keywords
Multibody dynamics Contact/impact Ordinary differential equation Differential–algebraic equation Cosimulation Uncertainty Multi-field coupling Transfer matrix method Absolute nodal coordinate formulation Computer symbolic modeling Explicit–implicit hybrid integration Adaptive time integration Multi-rate method Parallel computing Clearance Lubrication Wear Nonlinear dynamicsNotes
Acknowledgements
The research received the support of the Natural Science Foundation of China (Grant Nos: 11702292, 11605234). We are very grateful to the experts in the field of multibody dynamics for providing a large number of reference data and modification suggestions.
Compliance with ethical standards
Conflicts of interest
The authors declare that they have no conflict of interest.
References
- 1.Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)Google Scholar
- 2.Lemu, H.G.: Advances in numerical computation based mechanical system design and simulation. Adv. Manuf. 3(2), 130–138 (2015)Google Scholar
- 3.Tian, Q., Cheng, L., Pei, L., et al.: Advances and challenges in dynamics of flexible multibody systems. J. Dyn. Control 15(5), 385–405 (2017)Google Scholar
- 4.Wang, Q., Zhuang, F.F., Guo, Y.Y., et al.: Advances in the research on numerical methods for non-smooth dynamics of multibody systems. Adv. Mech. 43(1), 101–111 (2013)Google Scholar
- 5.Laflin, J.J., Anderson, K.S., Khan, I.M., et al.: Advances in the application of the divide-and-conquer algorithm to multibody system dynamics. J. Comput. Nonlinear Dyn. 9(4), 041003 (2014)Google Scholar
- 6.Wittenburg, J.: Dynamics of Systems of Rigid Bodies. B. G. Teubner, Stuttgart (1977)zbMATHGoogle Scholar
- 7.Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008)zbMATHGoogle Scholar
- 8.Kane, T.R., Likins, P.W., Levinson, D.A.: Spacecraft Dynamics. McGraw-Hill Book Company, New York (1983)Google Scholar
- 9.Schiehlen, W.: Multibody Systems Handbook. Springer, Berlin (1990)zbMATHGoogle Scholar
- 10.Schiehlen, W.: Benchmark problems from vehicle dynamics. J. Mech. Sci. Technol. 29(7), 2601–2606 (2015)Google Scholar
- 11.Schiehlen, W.: Computational dynamics: theory and applications of multibody systems. Eur. J. Mech. A. Solids 25, 566–594 (2006)MathSciNetzbMATHGoogle Scholar
- 12.Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Sys.Dyn. 1(2), 149–188 (1997)MathSciNetzbMATHGoogle Scholar
- 13.Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer, Berlin (1988)zbMATHGoogle Scholar
- 14.Huston, R.L., Liu, C.Q.: Advances in computational methods for multibody system dynamics. CMES Comput. Model. Eng. Sci. 10(2), 143–152 (2005)MathSciNetzbMATHGoogle Scholar
- 15.Huston, R.L.: Multibody Dynamics. Butterworth–Heinemann, Boston (1990)zbMATHGoogle Scholar
- 16.Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, New York (2013)zbMATHGoogle Scholar
- 17.Shabana, A.A.: ANCF reference node for multibody system analysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 229(1), 109–112 (2015)MathSciNetGoogle Scholar
- 18.Shabana, A.A.: ANCF tire assembly model for multibody system applications. J. Comput. Nonlinear Dyn. 10(2), 024504 (2015)Google Scholar
- 19.Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)MathSciNetzbMATHGoogle Scholar
- 20.Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multibody Syst. Dyn. 42(3), 317–345 (2018)MathSciNetzbMATHGoogle Scholar
- 21.Magalhaes, H., Ambrosio, J., Pombo, J.: Railway vehicle modelling for the vehicle-track interaction compatibility analysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(3), 251–267 (2016)Google Scholar
- 22.Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1(1), 3–12 (2006)Google Scholar
- 23.Eberhard, P., Hu, B.: Advanced Contact Dynamics. Southeast University Press, Nanjing (2003)Google Scholar
- 24.Fehr, J., Eberhard, P.: Simulation process of flexible multibody systems with non-modal model order reduction techniques. Multibody Syst. Dyn. 25(3), 313–334 (2011)zbMATHGoogle Scholar
- 25.Haug, E.J.: An index 0 differential-algebraic equation formulation for multibody dynamics: nonholonomic constraints. Mech. Based Des. Struct. Mach. 46(1), 38–65 (2018)Google Scholar
- 26.Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)Google Scholar
- 27.Bauchau, O.A., Han, S.: Flexible joints in structural and multibody dynamics. Mech. Sci. 4(1), 65–77 (2013)Google Scholar
- 28.Bauchau, O.A.: Parallel computation approaches for flexible multibody dynamics simulations. J. Franklin Inst. Eng. Appl. Math. 347(1), 53–68 (2010)MathSciNetzbMATHGoogle Scholar
- 29.Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht (2010)zbMATHGoogle Scholar
- 30.Cuadrado, J., Dopico, D., Naya, M.A., et al.: Penalty, semi-recursive and hybrid methods for MBS real-time dynamics in the context of structural integrators. Multibody Syst. Dyn. 12(2), 117–132 (2004)zbMATHGoogle Scholar
- 31.Masarati, Pierangelo, Morandini, Marco, Mantegazza, Paolo: An efficient formulation for general-purpose multibody / multiphysics analysis. J. Comput. Nonlinear Dyn. 9(4), 041001 (2014)Google Scholar
- 32.Masarati, P.: Robust static analysis using general-purpose multibody dynamics. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 229(2), 152–165 (2015)Google Scholar
- 33.Yoo, Wan-Suk: Automation for pick arrangement design of a cutting head attachment using RecurDyn/ProcessNet. Trans. KSME A 40(7), 685–692 (2016)Google Scholar
- 34.Yoo, Wan-Suk, Kim, Kee-Nam, Kim, Hyun-Woo, et al.: Developments of multibody system dynamics: computer simulations and experiments. Multibody Syst. Dyn. 18, 35–58 (2007)zbMATHGoogle Scholar
- 35.Flores, P.: A new approach to eliminate the constraints violation at the position and velocity levels in constrained mechanical multibody systems. In: 5th European Conference on Mechanism Science (EUCOMES). Guimaraes, Portugal (2014)Google Scholar
- 36.McPhee, J., Schmitke, C., Redmond, S.: Dynamic modelling of mechatronic multibody systems with symbolic computing and linear graph theory. Math. Comput. Model. Dyn. Syst. 10(1), 1–23 (2004)zbMATHGoogle Scholar
- 37.Fisette, P., Samin, J.C.: Teaching multibody dynamics from modeling to animation. Multibody Syst. Dyn. 13(3), 339–351 (2005)zbMATHGoogle Scholar
- 38.Anderson, K.S.: Multibody computational dynamics-modeling involving scales from atoms to the motion of the planets. Int. J. Multiscale Comput. Eng. 1(2–3), 7–8 (2003)Google Scholar
- 39.Liu, Y.Z., Hong, J.Z., Yang, H.X.: Dynamics of Multi-rigid-body Systems. Higher Education Press, Beijing (1989)Google Scholar
- 40.Chen, B.: on Kane’s equation. Acta. Mech. Sin. 16(3), 311–315 (1984)zbMATHGoogle Scholar
- 41.Hong, J.Z.: Computational Multibody System Dynamics. Higher Education Press, Beijing (1999)Google Scholar
- 42.Liu, C.S., Zhang, H.J., Zhao, Z., et al.: Impact-contact dynamics in a disc-ball system. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(2152), 20120741 (2013)MathSciNetzbMATHGoogle Scholar
- 43.Lu, Y.F.: Dynamics of Flexible Multibody System. Higher Education Press, Beijing (1996)Google Scholar
- 44.Huston, R.L., Liu, Y.W.: Multibody System Dynamics: Upper Volume. Tianjin University Press, Tianjin (1987)Google Scholar
- 45.Huston, R.L., Liu, Y.W.: Multibody System Dynamics: Lower Volume. Tianjin University Press, Tianjin (1991)Google Scholar
- 46.Huang, W.H., Shao, C.X.: Dynamics of Flexible Multibody System. Science Press, Beijing (1996)Google Scholar
- 47.Hu, H.Y., Tian, Q., Liu, C.: Computational dynamics of soft machines. Acta. Mech. Sin. 33(3), 516–528 (2017)MathSciNetzbMATHGoogle Scholar
- 48.Hu, H.Y., Tian, Q., Zhang, W., et al.: Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Adv. Mech. 43(4), 390–414 (2013)Google Scholar
- 49.Rui, X.T., Yun, L.F., Lu, Y.Q., et al.: Transfer Matrix Method of Multibody System and its Application. Science Press, Beijing (2008)Google Scholar
- 50.Rui, X.T., Abbas, L.K., Yang, F.F., et al.: Flapwise vibration computations of coupled helicopter rotor/fuselage: application of multibody system dynamics. AIAA J. 56(2), 818–835 (2018)Google Scholar
- 51.Rui, X.T., Gu, J.J., Zhang, J.S., et al.: Visualized simulation and design method of mechanical system dynamics based on transfer matrix method for multibody systems. Adv. Mech. Eng. 9(8), 1687814017714729 (2017)Google Scholar
- 52.Liu, J.Y., Pan, K.Q.: Rigid-flexible-thermal coupling dynamic formulation for satellite and plate multibody system. Aerosp. Sci. Technol. 52, 102–114 (2016)Google Scholar
- 53.Liu, J.Y., Lu, H.: Nonlinear formulation for flexible multibody system applied with thermal load. In: ASME Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 5, PTS A-C, pp. 1173–1181 (2007)Google Scholar
- 54.Qi, Z.H.: Multibody System Dynamics. Science Press, Beijing (2008)Google Scholar
- 55.Qi, Z.H., Wang, G., Zhang, Z.G.: Contact analysis of deep groove ball bearings in multibody systems. Multibody Syst. Dyn. 33(2), 115–141 (2015)MathSciNetzbMATHGoogle Scholar
- 56.Magnus K.: Drehbewegungen starrer Korper im zentralen Schwerefeld. In: Proceedings of the 11th International Congress of Theoretical and Applied Mechanics, Munich, Germany (1977)Google Scholar
- 57.Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008)Google Scholar
- 58.Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)Google Scholar
- 59.Masarati, P.: Adding kinematic constraints to purely differential dynamics. Comput. Mech. 47(2), 187–203 (2011)MathSciNetzbMATHGoogle Scholar
- 60.Masarati, P.: Constraint stabilization of mechanical systems in ordinary differential equations form. Proc. IMechE Part K: J. Multi-body Dyn. 225(1), 12–31 (2011)Google Scholar
- 61.Arnold, M., Burgermeister, B., Führer, C., et al.: Numerical methods in vehicle system dynamics: state of the art and current developments. Veh. Syst. Dyn. 49(7), 1159–1207 (2011)Google Scholar
- 62.Pardo, A.C., Goulos, I., Pachidis, V.: Modelling and analysis of coupled flap-lag-torsion vibration characteristics helicopter rotor blades. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 231(10), 1804–1823 (2017)Google Scholar
- 63.Cheng, L., Wang, T.S., Li, J.F.: Attitude dynamics and control of a flexible multi-body satellite. J. Tsinghua Univ. 45(11), 1506–1509 (2005)Google Scholar
- 64.Rui, X.T., Kreuzer, E., Rong, B., et al.: Discrete time transfer matrix method for dynamics of multibody system with flexible beams moving in space. Acta. Mech. Sin. 28(2), 490–504 (2012)MathSciNetzbMATHGoogle Scholar
- 65.Sharifnia, M., Akbarzadeh, A.: A constrained assumed modes method for dynamics of a flexible planar serial robot with prismatic joints. Multibody Syst. Dyn. 40, 261–285 (2017)MathSciNetzbMATHGoogle Scholar
- 66.Sharifnia, M., Akbarzadeh, A.: Dynamics and vibration of a 3-PSP parallel robot with flexible moving platform. J. Vib. Control 22(4), 1095–1116 (2016)MathSciNetGoogle Scholar
- 67.Ambrósio, Jorge, Pombo, João, Antunes, Pedro, et al.: PantoCat statement of method. Veh. Syst. Dyn. 53(3), 314–328 (2015)Google Scholar
- 68.Betsch, P., Becker, C., Franke, M., et al.: A comparison of DAE integrators in the context of benchmark problems for flexible multibody dynamics. J. Mech. Sci. Technol. 29(7), 2653–2661 (2015)Google Scholar
- 69.Rong, B., Rui, X.T., Wang, G.P., et al.: Discrete time transfer matrix method for dynamic modeling of complex spacecraft with flexible appendages. J. Comput. Nonlinear Dyn. 6(1), 011013 (2011)Google Scholar
- 70.Rong, B., Rui, X.T., Wang, G.P., et al.: New efficient method for dynamics modeling and simulation of flexible multibody systems moving in plane. Multibody Syst. Dyn. 24(2), 181–200 (2010)MathSciNetzbMATHGoogle Scholar
- 71.Sarker, M., GeoffRideout, D., Butt, S.D.: Dynamic model for 3D motions of a horizontal oilwell BHA with wellbore stick-slip whirl interaction. J. Petrol. Sci. Eng. 157, 482–506 (2017)Google Scholar
- 72.Khurelbaatar, T., Kim, K., Kim, Y.H.: A cervico-thoraco-lumbar multibody dynamic model for the estimation of joint loads and muscle forces. J. Biomech. Eng. 137(11), 111001 (2015)Google Scholar
- 73.Wu, J.Z., Dong, R.G., Warren, C.M., et al.: Analysis of the effects of surface stiffness on the contact interaction between a finger and a cylindrical handle using a three-dimensional hybrid model. Med. Eng. Phys. 36(7), 831–841 (2014)Google Scholar
- 74.Pramudita, J.A., Kikuchi, S., Tanabe, Y.: Numerical analysis of vehicle occupant responses during rear impact using a human body model. Appl. Mech. Mater. 566, 480–485 (2014)Google Scholar
- 75.Drag, Ł.: Application of dynamic optimisation to the trajectory of a cable-suspended load. Nonlinear Dyn. 84, 1637–1653 (2016)MathSciNetGoogle Scholar
- 76.Sun, H.L., Wu, H.T., Shao, B., et al.: The finite segment method for recursive approach to flexible multibody dynamics. In: 2nd International Conference on Information and Computing Science. Manchester, England (2009)Google Scholar
- 77.Wang, G.P., Rong, B., Tao, L., et al.: Riccati discrete time transfer matrix method for dynamics of underwater towed system. J. Appl. Mech. 79(4), 041004 (2012)Google Scholar
- 78.Wu, L., Sun, Y.R., Huang, B., et al.: Dynamic modeling and performance analysis of a hose-drogue aerial refueling system based on the Kane equation. In: IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China (2016)Google Scholar
- 79.Gao, Q.Y., Zhang, Q.B., Peng, W.Y., et al.: Dynamics modelling and ground test of space nets. In: 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). England, London (2016)Google Scholar
- 80.Ma, H.W., Wang, C.W.: Studying and simulation analysis for rubber track of rescue robot. Appl. Mech. Mater. 457–458, 643–648 (2014)Google Scholar
- 81.Bak, M.K., Hansen, M.R.: Analysis of offshore knuckle boom crane-part one: modeling and parameter identification. Model. Identif. Control 34(4), 157–174 (2013)Google Scholar
- 82.Lipinski, K., Kneba, Z.: Rigid finite element modeling for identification of vibrations in elastic rod driven by a DC-motor supplied from a thyristor rectifier. In: 5th International Conference on Mechatronic Systems and Materials. Vilnius, Lithuania (2009)Google Scholar
- 83.Szczotka, M.: A modification of the rigid finite element method and its application to the J-lay problem. Acta Mech. 220(1–4), 183–198 (2011)zbMATHGoogle Scholar
- 84.Xie, D., Jian, K.L., Wen, W.B.: An element-free Galerkin approach for rigid-flexible coupling dynamics in 2D state. Appl. Math. Comput. 310(1), 149–168 (2017)MathSciNetzbMATHGoogle Scholar
- 85.Ibáñez, D.I., Orden, J.C.: García, Galerkin meshfree methods applied to the nonlinear dynamics of flexible multibody systems. Multibody Syst. Dyn. 25(2), 203–224 (2011)MathSciNetGoogle Scholar
- 86.Du, C.F., Zhang, D.G., Hong, J.Z.: A meshfree method based on radial point interpolation method for the dynamic analysis of rotating flexible beams. Chin. J. Theoret. Appl. Mech. 47(2), 279–288 (2015)Google Scholar
- 87.Fan, J.H., Zhang, D.G.: Bezier interpolation method for the dynamics of rotating flexible cantilever beam. Acta Phys. Sin. 63(15), 154501 (2014)Google Scholar
- 88.Kerdjoudj, M., Amirouche, F.M.L.: Implementation of the boundary element method in the dynamics of flexible bodies. Int. J. Numer. Meth. Eng. 39(2), 321–354 (1996)zbMATHGoogle Scholar
- 89.Escalona José, L., Sugiyama, H., Shabana, A.A.: Modelling of structural flexiblity in multibody railroad vehicle systems. Veh. Syst. Dyn. 51(7), 1027–1058 (2013)Google Scholar
- 90.Hamper, M.B., Zaazaa, K.E., Shabana, A.A.: Modeling railroad track structures using the finite segment method. Acta Mech. 223(8), 1707–1721 (2012)zbMATHGoogle Scholar
- 91.Hamper, M.B., Recuero, A.M., Escalona, J.L., et al.: Use of finite element and finite segment methods in modeling rail flexibility: a comparative study. J. Comput. Nonlinear Dynam 7(4), 041007 (2012)Google Scholar
- 92.Arbatani, S., Callejo, A., Kovecses, J., et al.: An approach to directional drilling simulation: finite element and finite segment methods with contact. Comput. Mech. 57(6), 1001–1015 (2016)MathSciNetzbMATHGoogle Scholar
- 93.Lozovskiy, A., Dubois, F.: The method of a floating frame of reference for non-smooth contact dynamics. Eur. J. Mech. A. Solids 58, 89–101 (2016)MathSciNetzbMATHGoogle Scholar
- 94.Wu, T.H., Liu, Z.Y., Hong, J.Z.: A recursive formulation based on corotational frame for flexible planar beams with large displacement. J. Central South Univ. 25(1), 208–217 (2018)Google Scholar
- 95.Le, Thanh-Nam, Battini, Jean-Marc, Hjiaj, Mohammed: Corotational formulation for nonlinear dynamics of beams with arbitrary thin-walled open cross-sections. Comput. Struct. 134(1), 112–127 (2014)Google Scholar
- 96.Le, Thanh-Nam, Battini, Jean-Marc, Hjiaj, Mohammed: A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures. Comput. Methods Appl. Mech. Eng. 269(1), 538–565 (2014)MathSciNetzbMATHGoogle Scholar
- 97.Verlinden, O., Huynh, H.N., Kouroussis, G., et al.: Modelling of flexible bodies with minimal coordinates by means of the corotational formulation. Multibody Syst. Dyn. 42(4), 495–514 (2018)MathSciNetzbMATHGoogle Scholar
- 98.Boer, S.E., Aarts, R.G.K.M., Meijaard, J.P., et al.: A nonlinear two-node superelement for use in flexible multibody systems. Multibody Syst. Dyn. 31(4), 405–431 (2014)MathSciNetzbMATHGoogle Scholar
- 99.Chebbi, J., Dubanchet, V., Gonzalez, J.A.P.: Linear dynamics of flexible multibody systems A system-based approach. Multibody Syst. Dyn. 41(1), 75–100 (2017)MathSciNetzbMATHGoogle Scholar
- 100.Olshevskiy, A., Dmitrochenko, O., Yang, H.I., et al.: Absolute nodal coordinate formulation of tetrahedral solid element. Nonlinear Dyn. 88(4), 2457–2471 (2017)zbMATHGoogle Scholar
- 101.Pappalardo, C.M., Zhang, Z.G., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91(4), 2171–2202 (2018)Google Scholar
- 102.Tian, Q., Zhang, Y.Q., Chen, L.P.: Advances in the absolute nodal coordinate method for the flexible multibody dynamics. Adv. Mech. 40(2), 189–202 (2010)Google Scholar
- 103.Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016 (2013)Google Scholar
- 104.Lee, S.H., Park, T.W., Seo, J.H., Yoon, J.W., Jun, K.J.: The development of a sliding joint for very flexible multibody dynamics using absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 223–237 (2008)zbMATHGoogle Scholar
- 105.Yu, H.D., Zhao, C.Z., Zheng, H.: A higher-order variable cross-section viscoelastic beam element via ANCF for kinematic and dynamic analyses of two-link flexible manipulators. Int. J. Appl. Mech. 09, 1750116 (2017)Google Scholar
- 106.Abbas, L.K., Rui, X.T., Marzocca, P.: Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 33(2), 163–178 (2015)MathSciNetzbMATHGoogle Scholar
- 107.Hu, W., Tian, Q., Hu, H.Y.: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75(4), 653–671 (2014)MathSciNetGoogle Scholar
- 108.Liu, Z.Y., Hong, J.Z.: Research and prospect of flexible multi-body systems dynamics. Chin. J. Comput. Mech. 25(4), 411–416 (2008)zbMATHGoogle Scholar
- 109.Liu, A.Q., Liew, K.M.: Non-linear substructure approach for dynamic analysis of rigid flexible multibody systems. Comput. Methods Appl. Mech. Eng. 114, 379–390 (1994)Google Scholar
- 110.Wu, S.C., Haug, E.J.: Geometric non-linear substructuring for dynamics of flexible mechanical systems. Int. J. Numer. Methods Eng. 26, 2211–2226 (1998)zbMATHGoogle Scholar
- 111.Das, M., Barut, A., Madenci, E.: Analysis of multibody systems experiencing large elastic deformations. Multibody Syst. Dyn. 23(1), 1–31 (2010)MathSciNetzbMATHGoogle Scholar
- 112.Garcia-Vallejo, D., Sugiyama, H., Shabana, A.A.: Finite element analysis of the geometric stiffening effect Part 1: a correction in the floating frame of reference formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 219(2), 187–202 (2005)Google Scholar
- 113.Liu, J.Y., Li, B., et al.: Rigid-flexible dynamics of elastic beam undergoing large motion. Acta. Mech. Sin. 38(2), 276–282 (2006)Google Scholar
- 114.You, C.L.: Study on modeling theory for rigid-flexible coupling dynamics of multibody systems with large deformations. University of Shanghai Jiaotong (2006)Google Scholar
- 115.Masarati, P., Morandini, M.: Intrinsic deformable joints. Multibody Syst. Dyn. 23(4), 361–386 (2010)MathSciNetzbMATHGoogle Scholar
- 116.Bauchau, O.A., Li, L.H., Masarati, P., et al.: Tensorial deformation measures for flexible joints. J. Comput. Nonlinear Dyn. 6(3), 031002 (2011)Google Scholar
- 117.Santini, P., Gasbarri, P.: General background and approach to multibody dynamics for space applications. Acta Astronaut. 64(11–12), 1224–1251 (2009)Google Scholar
- 118.Paraskevopoulos, E., Potosakis, N., Natsiavas, S.: An augmented Lagrangian formulation for the equations of motion of multibody systems subject to equality constraints. Proc. Eng. 199, 747–752 (2017)Google Scholar
- 119.Bascetta, L., Ferretti, G., Scaglioni, B.: Closed form Newton–Euler dynamic model of flexible manipulators. Robotica 35(5), 1006–1030 (2017)Google Scholar
- 120.Scaglioni, Bruno, Bascetta, Luca, Baur, Marco: Closed-form control oriented model of highly flexible manipulators. Appl. Math. Model. 52, 174–185 (2017)MathSciNetGoogle Scholar
- 121.Boyer, F., Porez, M., Morsli, F., et al.: Locomotion dynamics for bio-inspired robots with soft appendages: application to flapping flight and passive swimming. J. Nonlinear Sci. 27(4), 1121–1154 (2017)MathSciNetzbMATHGoogle Scholar
- 122.Xu, L., Li, D.Y., Mo, W.W., et al.: Random response analysis for flexible blade of a wind turbine based on nonlinear aero-elastic coupled model. J. Vib. Shock 34(10), 20–27 (2015)Google Scholar
- 123.Richard, M.J., Huang, M.Z., Bouazara, M.: Computer aided analysis and optimal design of mechanical systems using vector-network techniques. Appl. Math. Comput. 157(1), 175–200 (2004)MathSciNetzbMATHGoogle Scholar
- 124.Richard, M.J., McPhee, J.J., Anderson, R.J.: Computerized generation of motion equations using variational graph-theoretic methods. Appl. Math. Comput. 192(1), 135–156 (2007)MathSciNetzbMATHGoogle Scholar
- 125.Hao, L., Jinyang, L.: Parallel manipulator dynamics with thermal strain. Chin. J. Appl. Mech. 24(3), 391–395 (2007)Google Scholar
- 126.Hu, M., Kong, F., Chen, W.H., et al.: Multi-body dynamics of repeated fold-unfold and lock-unlock solar array. Chin. J. Space Sci. 34(4), 489–496 (2014)Google Scholar
- 127.Haug, E.J.: Simulation of spatial multibody systems with friction. Mech. Based Des. Struct. Mach. 46(3), 347–375 (2018)Google Scholar
- 128.Tang, D., Bao, S.Y., Lv, B.B., et al.: A derivative-free algorithm for nonlinear equations and its applications in multibody dynamics. J. Algorithm Comput. Technol. 12(1), 30–42 (2018)MathSciNetGoogle Scholar
- 129.Siqueira, T.M., Coda, H.B.: Total Lagrangian FEM formulation for nonlinear dynamics of sliding connections in viscoelastic plane structures and mechanisms. Finite Elem. Anal. Des. 129, 63–77 (2017)MathSciNetGoogle Scholar
- 130.Bauchau, O.A., Betsch, P., Cardona, A., et al.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst. Dyn. 37(1), 29–48 (2016)MathSciNetzbMATHGoogle Scholar
- 131.Rui, X.T., Rong, B., Wang, G.P., et al.: Discrete time transfer matrix method for dynamics analysis of complex weapon systems. Sci. China Technol. Sci. 54(5), 1061–1071 (2011)zbMATHGoogle Scholar
- 132.Rui, X.T., Bestle, D., Zhang, J.S., et al.: A new version of transfer matrix method for multibody systems. Multibody Syst. Dyn. 38(2), 137–156 (2016)MathSciNetzbMATHGoogle Scholar
- 133.Rong, B.: Study on transfer matrix method for dynamics of controlled multibody systems, Ph.D. Dissertation, Nanjing: Nanjing University of Science and Technology (2011)Google Scholar
- 134.Rong, B., Rui, X.T., Tao, L.: Discrete time transfer matrix method for launch dynamics modeling and cosimulation of self-propelled artillery system. J. Appl. Mech. 80(1), 011008 (2013)Google Scholar
- 135.Rong, B.: Efficient dynamics analysis of large-deformation flexible beams by using the absolute nodal coordinate transfer matrix method. Multibody Syst. Dyn. 32(4), 535–549 (2014)MathSciNetzbMATHGoogle Scholar
- 136.Rong, B., Lu, K., Rui, X.T., et al.: Nonlinear dynamics analysis of pipe conveying fluid by Riccati absolute nodal coordinate transfer matrix method. Nonlinear Dyn. 92(2), 699–708 (2018)Google Scholar
- 137.Rong, B., Rui, X.T., Lu, K., et al.: Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system. Mech. Syst. Signal Process. 104(1), 589–606 (2018)Google Scholar
- 138.Rong, B., Rui, X.T., Tao, L.: Dynamics and genetic fuzzy neural network vibration control design of a smart flexible four-bar linkage mechanism. Multibody Syst. Dyn. 28(4), 291–311 (2012)MathSciNetGoogle Scholar
- 139.Rong, B., Rui, X.T., Yang, F.F., et al.: Discrete time transfer matrix method for dynamics of multibody system with real-time control. J. Sound Vib. 329(6), 627–643 (2010)Google Scholar
- 140.Rong, B., Rui, X.T., Wang, G.P., et al.: Dynamic modeling and H\(\infty \) independent modal space vibration control of laminate plates. Sci.China Phys. Mech. Astron. 54(9), 1638–1650 (2011)Google Scholar
- 141.Schilder, J., Ellenbroek, M., de Boer, A.: Recursive thoughts on the simulation of the flexible multibody dynamics of slender offshore structures. In: IOP Conference Series: Materials Science and Engineering, Vol. 276, pp. 012029 (2017)Google Scholar
- 142.Schilder, J., Ellenbroek, M., de Boer, A.: Recursive solution procedures for flexible multibody systems: comparing condensation and transfer matrix methods. 2017. Paper presented at 8th ECCOMAS Thematic Conference on Multibody Dynamics 2017, Prague, Czech RepublicGoogle Scholar
- 143.Krauss, R.: Infinite-Dimensional Pole-optimization control design for flexible structures using the transfer matrix method. J. Comput. Nonlinear Dyn. 9(1), 011004 (2013)Google Scholar
- 144.Krauss, R., Okasha, M.: Discrete-time transfer matrix modeling of flexible robots under feedback control. In: American Control Conference (ACC), Washington DC (2013)Google Scholar
- 145.Abbas, L.K., Zhou, Q.B., Rui, X.T.: Frequency determination of beams coupled by a double spring-mass system using transfer matrix method of linear multibody systems. In: 5th International Symposium on Knowledge Acquisition and Modeling (KAM). England, London (2015)Google Scholar
- 146.Hendy, H., Rui, X., Zhou, Q., et al.: Transfer matrix method for multibody systems of TITO system control applications. Appl. Mech. Mater. 530–531, 1043–1048 (2014)Google Scholar
- 147.He, B., Rui, X.T., Zhang, H.L.: Transfer matrix method for natural vibration analysis of tree system. Math. Probl. Eng. 393204 (2012)Google Scholar
- 148.Shen, Z.Y., Yuan, Y., Yuan, H.T., et al.: Multibody dynamics method for immersed tunnel subjected to longitudinal seismic loading. In: 11th World Congress on Computational Mechanics (WCCM)/5th European Conference on Computational Mechanics (ECCM)/6th European Conference on Computational Fluid Dynamics (ECFD), Barcelona, Spain (2014)Google Scholar
- 149.Srensen, R., Iversen, M.R., Zhang, X.: Dynamic modeling of flexible robot manipulators: acceleration-based discrete time transfer matrix method. In: Bai S., Ceccarelli M. (eds) Recent Advances in Mechanism Design for Robotics. Mechanisms and Machine Science, vol 33. Springer, Cham (2015)Google Scholar
- 150.Šalinić, S., Bošković, G., Nikolić, M.: Dynamic modelling of hydraulic excavator motion using Kane’s equations. Autom. Constr. 44, 56–62 (2014)Google Scholar
- 151.Orsino, R.M.M., Coelho, T.A.H., Pesce, C.P.: Analytical mechanics approaches in the dynamic modelling of Delta mechanism. Robotica 33(4), 953–973 (2015)Google Scholar
- 152.Zhong, Y.W., Wang, L.M.: A method to establish the dynamic models of multibody system based on Kane’s equations. In: 2nd International Conference on Modelling, Identification and Control (MIC). France, Paris (2015)Google Scholar
- 153.Pishkenari, H.N., Yousefsani, S.A., Gaskarimahalle, A.L., et al.: A fresh insight into Kane’s equations of motion. Robtica 35(3), 498–510 (2017)Google Scholar
- 154.Klausen, K., Fossen, T.I., Johansen, T.A.: Nonlinear control with swing damping of a multirotor UAV with suspended load. J. Intell. Robot. Syst. 88(2–4), 379–394 (2017)Google Scholar
- 155.Zhao, J., Zhao, R., Xue, Z.: A new modeling method for flexible multibody systems. Multibody Syst. Dyn. 35, 179–190 (2015)MathSciNetzbMATHGoogle Scholar
- 156.Pestel, E.C., Leckie, F.A.: Matrix Method in Elastomechanics. McGraw-Hill Book Company, New York (1963)Google Scholar
- 157.Horner, G.C., Pilkey, W.D.: The riccati transfer matrix method. ASME J. Mech. Des. 1(2), 297–302 (1978)Google Scholar
- 158.Kumar, A.S., Sankar, T.S.: A new transfer matrix method for response analysis of large dynamic systems. Comput. Struct. 23(4), 545–552 (1986)zbMATHGoogle Scholar
- 159.Loewy, R.G., Bhntani, N.: Combined finite element-transfer matrix method. J. Sound Vib. 226(5), 1048–1052 (1999)Google Scholar
- 160.Wang, L., Hofmann, V., Bai, F.S., et al.: Modeling of coupled longitudinal and bending vibrations in a sandwich type piezoelectric transducer utilizing the transfer matrix method. Mech. Syst. Signal Process. 108, 216–237 (2018)Google Scholar
- 161.Kim, J.S., Park, N., Lee, H.: Vibration analysis of a planetary gear system based on the transfer matrix method. J. Mech. Sci. Technol. 30(2), 611–621 (2016)Google Scholar
- 162.Bozdogan, K.B., Ozturk, D.: Vibration Analysis of Asymmetric-Plan Frame Buildings Using Transfer Matrix Method. Math. Comput. Appl. 15(2), 279–288 (2010)zbMATHGoogle Scholar
- 163.Wickenheiser, A.M., Reissman, T.: Generalized eigensolution to piecewise continuous distributed-parameter models of piezoelectric energy harvesters using the transfer matrix method. In: 4th Annual Meeting of the ASME/AIAA Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS). Scottsdale, AZ (2011)Google Scholar
- 164.Boiangiu, M., Boiangiu, G.: Improved transfer matrix method for the study of vibrations of the centrifuges with the basket in console. Mater. Res. Appl. 875–877: 2067 (2014)Google Scholar
- 165.Zhang, J.S.: Study on some issues of the new version of transfer matrix method for multibody systems, Ph.D. Dissertation, Nanjing: Nanjing University of Science and Technology (2017)Google Scholar
- 166.Guida, D., Pappalardo, C.M.: Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49(7), 1547–1559 (2014)MathSciNetzbMATHGoogle Scholar
- 167.Shi, Y.D., Wang, D.S.: Dynamics analysis of multibody system using Gauss constraint. Mech. Eng. 32(6), 22–26 (2010)Google Scholar
- 168.Liu, Y.Z.: Dynamic modeling of multi-body system based on Gauss’s principle. Chin. J. Theoret. Appl. Mech. 46(6), 940–945 (2014)Google Scholar
- 169.Hao, M.W., Ye, Z.Y.: Gauss principle of least constraint of simple flexible body and multi-flexible body dynamics. J Guangxi Univ. Nat. Sci. Ed. 36(2), 195–204 (2011)Google Scholar
- 170.Khalil, W., Boyer, F., Morsli, F.: General dynamic algorithm for floating base tree structure robots with flexible joints and links. J. Mech. Robot. 9(3), 031003 (2017)Google Scholar
- 171.Muller, A.: Screw and Lie group theory in multibody dynamics recursive algorithms and equations of motion of tree-topology systems. Multibody Syst. Dyn. 42(2), 219–248 (2018)MathSciNetGoogle Scholar
- 172.Tong, M.M.: A recursive algorithm for solving the generalized velocities from the momenta of flexible multibody systems. J. Comput. Nonlinear Dyn. 5(4), 041002 (2010)Google Scholar
- 173.Boyer, F., Ali, S.: Recursive inverse dynamics of mobile multibody systems with joints and wheels. IEEE Trans. Rob. 27(2), 215–228 (2011)Google Scholar
- 174.Gattringer, H., Oberhuber, B., Mayr, J., et al.: Recursive methods in control of flexible joint manipulators. Multibody Syst. Dyn. 32(1), 117–131 (2014)MathSciNetzbMATHGoogle Scholar
- 175.Chadaj, K., Malczyk, P., Fraczek, J.: A parallel recursive Hamiltonian algorithm for forward dynamics of serial kinematic chains. IEEE Trans. Rob. 33(3), 647–660 (2017)zbMATHGoogle Scholar
- 176.Sun, H.L., Wu, H.T., Zhou, Y.J.: A transfer matrix method based on spatial operator algebra theory. Mech. Sci. Technol. 29(9), 1126–1131 (2010)Google Scholar
- 177.Tian, F.Y., Wu, H.T., Zhao, D.X.: Hybrid dynamics of flexible multibody system and real time simulation. China Mech. Eng. 21(1), 6–12 (2010)Google Scholar
- 178.Hu, J.C., Wang, T.S.: A recursive absolute nodal coordinate formulation with O(n) algorithm complexity. Chin. J. Theoret. Appl. Mech. 48(5), 1172–1183 (2016)MathSciNetGoogle Scholar
- 179.Liu, F., Zhang, J.R., Hu, Q.: A modified constraint force algorithm for flexible multibody dynamics with loop constraints. Nonlinear Dyn. 90(3), 1885–1906 (2017)MathSciNetzbMATHGoogle Scholar
- 180.Qi, Z.H., Xu, Y.S., Luo, X.M.: Recursive formulations for multibody systems with frictional joints based on the interaction between bodies. Multibody Syst. Dyn. 24(2), 133–166 (2010)MathSciNetzbMATHGoogle Scholar
- 181.Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to moving base. J. Guid. 10(2), 139–151 (1987)Google Scholar
- 182.Zhang, W.: Numerical analysis of dynamic stiffening in flexible multibody systems, Master Dissertation. Dalian University of Technology, Dalian (2002)Google Scholar
- 183.Qi, ZhH, Chen, L., Zhang, W.: Belated initial stress method for dynamic stiffening in multibody systems. J. Dalian Univ. Technol. 42(1), 32–35 (2002)zbMATHGoogle Scholar
- 184.Sanborn, G., Choi, J., Shik, Yoon J., et al.: Systematic integration of finite element methods into multibody dynamics considering hyperelasticity and plasticity. J. Comput. Nonlinear Dyn. 9(4), 041012 (2014)Google Scholar
- 185.Ambrósio, J.A.C.: Dynamics of structures undergoing gross motion and nonlinear deformations: A multibody approach. Comput. Struct. 59(6), 1001–1012 (1996)zbMATHGoogle Scholar
- 186.Sugiyama, H., Shabana, A.A.: Analysis of plastic deformations in multibody system dynamics. In: 7th International Conference on Computational Structures Technology/4th International Conference on Engineering Computational Technology. Portugal, Lisbon (2004)Google Scholar
- 187.Orzechowski, Grzegorz, Frączek, Janusz: Volumetric locking suppression method for nearly incompressible nonlinear elastic multi-layer beams using ANCF elements. J. Theoret. Appl. Mech. 55(3), 977–990 (2017)Google Scholar
- 188.Pan, W., Haug, E.J.: Dynamic simulation of general flexible multibody systems. Mech. Struct. Mach. 27(2), 217–251 (1999)Google Scholar
- 189.Maqueda, L.G., Shabana, A.A.: Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams. Multibody Syst. Dyn. 18(3), 375–396 (2007)zbMATHGoogle Scholar
- 190.Maqueda, L.G., Mohamed, A.N.A., Shabana, A.A.: Use of general nonlinear material models in beam problems: application to belts and rubber chains. J. Comput. Nonlinear Dyn. 5(2), 021003 (2010)Google Scholar
- 191.Mohamed, A.N.A., Shabana, A.A.: A nonlinear visco-elastic constitutive model for large rotation finite element formulations. Multibody Syst. Dyn. 26(1), 57–79 (2011)MathSciNetzbMATHGoogle Scholar
- 192.Zhao, C.Z., Yu, H.D., Lin, Z.Q., et al.: Dynamic model and behavior of viscoelastic beam based on the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 229(1), 84–96 (2015)Google Scholar
- 193.Shi, W.: Dynamic investigation on elasto-plastic multi-body system, Master Dissertation. Shanghai Jiao Tong University, Shanghai (2010)Google Scholar
- 194.Cao, D., Zhao, Z., Ren, G., et al: Dynamic modeling of a viscoelastic body in a multibody system. J. Tsinghua Univ. 52(4): 486-488, 493 (2012)Google Scholar
- 195.Orzechowski, G., Fraczek, J.: Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF. Nonlinear Dyn. 82(1–2), 451–464 (2015)MathSciNetGoogle Scholar
- 196.Gebhardt, C.G., Hofmeister, B., Hente, C., et al.: Nonlinear dynamics of slender structures: a new object-oriented framework. Comput. Mech. 63(2), 219–252 (2019)MathSciNetzbMATHGoogle Scholar
- 197.Tran, D.M.: Component mode synthesis methods using interface modes. Appl. Struct. Cyclic Symmet. Comput. Struct. 79, 209–222 (2001)Google Scholar
- 198.Mikheev, G., Pogorelov, D., Dmitrochenko, O., et al: Flexible multibody approaches for dynamical simulation of beam structures in drilling. In: ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC) (2014)Google Scholar
- 199.Gerstmayr, J., Ambrosio, J.: Component mode synthesis with constant mass and stiffness. Int. J. Numer. Meth. Eng. 73, 1518–1546 (2008)zbMATHGoogle Scholar
- 200.O’Shea, J.J., Jayakumar, P., Mechergui, D., et al.: Reference conditions and substructuring techniques in flexible multibody system dynamics. J. Comput. Nonlinear Dyn. 13(4), 041007 (2018)Google Scholar
- 201.Kobayashi, N., Wago, T., Sugawara, Y.: Reduction of system matrices of planar beam in ANCF by component mode synthesis method. Multibody Syst. Dyn. 26, 265–281 (2011)zbMATHGoogle Scholar
- 202.Sun, D.Y., Chen, G.P., Shi, Y., et al.: Model reduction of a flexible multibody system with clearance. Mech. Mach. Theory 85, 106–115 (2015)Google Scholar
- 203.Lozovskiy, A.: The modal reduction method for multi-body dynamics with non-smooth contact. Int. J. Numer. Meth. Eng. 98, 937–959 (2014)MathSciNetzbMATHGoogle Scholar
- 204.Ricci, S., Troncossi, M., Rivola, A.: Model reduction of the flexible rotating crankshaft of a motorcycle engine cranktrain. Int. J. Rotat. Mach. 143523 (9 pp.) (2011)Google Scholar
- 205.Kim, J.G., Han, J.B., Lee, H., et al.: Flexible multibody dynamics using coordinate reduction improved by dynamic correction. Multibody Syst. Dyn. 42(4), 411–429 (2018)MathSciNetzbMATHGoogle Scholar
- 206.Sun, D.Y., Chen, G.P., Sun, R.J.: Model reduction of a multibody system including a very flexible beam element. J. Mech. Sci. Technol. 28(8), 2963–2969 (2014)Google Scholar
- 207.Fischer, M., Eberhard, P.: Linear model reduction of large scale industrial models in elastic multibody dynamics. Multibody Syst. Dyn. 31(1), 27–46 (2014)MathSciNetGoogle Scholar
- 208.Shiiba, T., Fehr, J., Eberhard, P.: Flexible multibody simulation of automotive systems with non-modal model reduction techniques. Veh. Syst. Dyn. 50(12), 1905–1922 (2012)Google Scholar
- 209.Fehr, J., Fischer, M., Haasdonk, B., et al.: Greedy-based approximation of frequency-weighted Gramian matrices for model reduction in multibody dynamics. Z. Angew. Math. Mech. 93(8), 501–519 (2013)MathSciNetzbMATHGoogle Scholar
- 210.Fehr, J., Eberhard, P.: Error-controlled model reduction in flexible multibody dynamics. J. Comput. Nonlinear Dyn. 5(3), 031005 (2010)Google Scholar
- 211.Liang, J.X., Ma, O., Liu, C.S.: Model reduction of contact dynamics simulation using a modified Lyapunov balancing method. Front. Mech. Eng. 6(4), 383–391 (2011)Google Scholar
- 212.Xiao, Z.H., Jiang, Y.L.: Dimension reduction for second-order systems by general orthogonal polynomials. Math. Comput. Model. Dyn. Syst. 20(4), 414–432 (2014)MathSciNetzbMATHGoogle Scholar
- 213.Masoudi, R., Uchida, T., McPhee, J.: Reduction of multibody dynamic models in automotive systems using the proper orthogonal decomposition. J. Comput. Nonlinear Dyn. 10(3), 031007 (2015)Google Scholar
- 214.Kim, E., Kim, H., Cho, M.: Model order reduction of multibody system dynamics based on stiffness evaluation in the absolute nodal coordinate formulation. Nonlinear Dyn. 87(3), 1901–1915 (2017)Google Scholar
- 215.Wu, L., Tiso, P.: Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach. Multibody Syst. Dyn. 36(4), 405–425 (2016)MathSciNetzbMATHGoogle Scholar
- 216.Holm-Jørgensen, K., Nielsen, S.R.K.: A component mode synthesis algorithm for multibody dynamics of wind turbines. J. Sound Vib. 326, 753–767 (2009)Google Scholar
- 217.Abbas, L.K., Rui, X.T., Marzocca, P.: Panel flutter analysis of plate element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 27, 135–152 (2011)MathSciNetzbMATHGoogle Scholar
- 218.Aarts, R.G.K.M., JonkerJ.B.: Dynamic simulation of planar flexible link manipulators using adaptive modal integration. Multibody Syst. Dyn. 7(1): 31–50 (2002)Google Scholar
- 219.Wang, F.X.: Model reduction with geometric stiffening nonlinearities for dynamic simulations of multibody systems. Int. J. Struct. Stab. Dyn. 13, 1350046 (2013)MathSciNetzbMATHGoogle Scholar
- 220.Ihrle, S., Lauxmann, M., Eiber, A., et al.: Nonlinear modelling of the middle ear as an elastic multibody system-applying model order reduction to acousto-structural coupled systems. J. Comput. Appl. Math. 246, 18–26 (2012)MathSciNetzbMATHGoogle Scholar
- 221.Luo, K., Hu, H.Y., Liu, C., et al.: Model order reduction for dynamic simulation of a flexible multibody system via absolute nodal coordinate formulation. Comput. Methods Appl. Mech. Eng. 324(1), 573–594 (2017)MathSciNetGoogle Scholar
- 222.Heirman Gert, H.K., Naets, F., Desmet, W.: A system-level model reduction technique for the efficient simulation of flexible multibody systems. Int. J. Numer. Meth. Eng. 85, 330–354 (2011)MathSciNetzbMATHGoogle Scholar
- 223.Heirman Gert, H.K., Naets, F., Desmet, W.: Forward dynamical analysis of flexible multibody systems using system-level model reduction. Multibody Syst. Dyn. 25(1), 97–113 (2011)MathSciNetzbMATHGoogle Scholar
- 224.Heirman G.H.K., Desmet W.: System-level modal representation of flexible multibody systems. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, San Diego, CA (2009)Google Scholar
- 225.Palomba, I., Richiedei, D., Trevisani, A.: A model reduction strategy for flexible-link multibody systems. In: Boschetti, G., Gasparetto, A. (eds) Advances in Italian Mechanism Science. Mechanisms and Machine Science, Vol. 47. Springer, Cham (2017)Google Scholar
- 226.Stadlmayr, D., Witteveen, W., Steiner, W.: A generalized constraint reduction method for reduced order MBS models. Multibody Syst. Dyn. 41(3), 259–274 (2017)MathSciNetzbMATHGoogle Scholar
- 227.Liu, Z.Y., Hong, J.Z., Wang, J.Y.: Study on model reduction of flexible multibody system with contact collision. In; The 9th National Academic Conference of System Dynamics and the 4th National Academic Conference on Aerospace Dynamics and Control. Wuhan, China (2015)Google Scholar
- 228.Held, A., Nowakowski, C., Moghadasi, A., et al.: On the influence of model reduction techniques in topology optimization of flexible multibody systems using the floating frame of reference approach. Struct. Multidiscip. Optim. 53(1), 67–80 (2016)MathSciNetGoogle Scholar
- 229.Orden, J.C.G.: Analysis of joint clearances in multibody systems. Multibody Syst. Dyn. 13(4), 401–420 (2005)MathSciNetzbMATHGoogle Scholar
- 230.Fox, B., Jennings, L.S., Zomaya, A.Y.: Numerical computation of differential-algebraic equations for nonlinear dynamics of multibody android systems in automobile crash simulation. IEEE Trans. Biomed. Eng. 46(10), 1199–1206 (1999)Google Scholar
- 231.Wang, W.B., Kang, K., Zhao, H.L.: Joint simulation of crashworthy train set based on finite element and multi-body dynamics. J. Tongji Univ. Nat. Sci. 39(10), 1552–1556 (2011)Google Scholar
- 232.Masoudi, R., Mcphee, J.: A novel micromechanical model of nonlinear compression hysteresis in compliant interfaces of multibody systems. Multibody Syst. Dyn. 37(3), 325–343 (2016)MathSciNetGoogle Scholar
- 233.Hassan, M.T.Z., Shi, M.G., Meguid, S.A.: Nonlinear multibody dynamics and finite element modeling of occupant response: part I–rear vehicle collision. Int. J. Mech. Mater. Des. pp. 1–19 (2019)Google Scholar
- 234.Dong, F.X., Hong, J.Z.: Review of impact problem for dynamics of multibody system. Adv. Mech. 39(3), 352–359 (2009)Google Scholar
- 235.Han, S.L., Hong, J.Z.: Several key issues in flexible multibody dynamics with contact/impact. Mech. Eng. 33(2), 1–7 (2011)Google Scholar
- 236.Khulief, Y.A.: Modeling of impact in multibody systems: an overview. J. Comput. Nonlinear Dyn. 8(2), 021012 (2012)Google Scholar
- 237.Yan, ShZ, Xiang, W.K., Huang, T.Q.: Advances in modeling of clearance joints and dynamics of mechanical systems with clearances. Acta Scientiarum Naturalium Universitatis Pekinensis 52(4), 741–755 (2016)MathSciNetGoogle Scholar
- 238.Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)Google Scholar
- 239.Damic, V., Cohodar, M., Damic, D.: Discontinuities in physical modeling: bond graph models of impact in multibody systems. In; 10th International Conference on Bond Graph Modeling and Simulation (ICBGM) as Part of SummerSim MultiConference. Genoa, Italy (2012)Google Scholar
- 240.Bai, Z.F., Zhao, Y., Tian, H.: Study on contact dynamics for flexible multi-body system. J. Vib. Shock 28(6), 75–78 (2009)Google Scholar
- 241.Li, Q., Wang, T.S., Ma, X.R.: Geometric nonlinear effects on the planar dynamics of a pivoted flexible beam encountering a point-surface impact. Multibody Syst. Dyn. 21(3), 249–260 (2009)zbMATHGoogle Scholar
- 242.Yu, L., Zhao, Z.H., Ren, Q.H., et al.: Contact simulations of flexible bodies based on absolute nodal coordinates. J. Tsinghua Univ. Sci. Technol. 50(7), 1135–1140 (2010)Google Scholar
- 243.Choi, J., Rhim, S., Choi, J.H.: A general purpose contact algorithm using a compliance contact force model for rigid and flexible bodies of complex geometry. Int. J. Non-Linear Mech. 53(SI): 13–23 (2013)Google Scholar
- 244.Wang, Q.T., Tian, Q., Hu, H.Y.: Dynamic simulation of frictional multi-zone contacts of thin beams. Nonlinear Dyn. 83(4), 1919–1937 (2016)Google Scholar
- 245.Dong, F.X., Hong, J.Z., Zhu, K., et al.: Numerical and experimental studies on impact dynamics of a planar flexible multibody system. Acta. Mech. Sin. 26(4), 635–642 (2010)MathSciNetzbMATHGoogle Scholar
- 246.Wang, D.T., Hong, J.Z., Wu, T.H.: Additional contact constraint method in impact stage of planar flexible multi-body dynamics. Chin. J. Theoret. Appl. Mech. 43(6), 1157–1161 (2011)Google Scholar
- 247.Qian, Z.J., Zhang, D.G., Jin, C.Q.: Dynamic simulation for flexible multibody systems containing frictional impact and stick- slip processes. J. Vib. Shock 36(23), 32–37 (2017)Google Scholar
- 248.Dong, F.X., Hong, J.Z.: Study on the modeling theory of the normal impact dynamics for the planar flexible multibody system. Chin. J. Comput. Mech. 27(6), 1042–1048 (2010)Google Scholar
- 249.Duan, Y.C., Zhang, D.G., Hong, J.Z.: Partition method for impact dynamics of flexible multibody systems based on contact constraint. Appl. Math. Mech. 34(11), 1393–1404 (2013)MathSciNetGoogle Scholar
- 250.Chen, P., Liu, J.Y., Lu, G.C.: A new subregion mesh method for the investigation of the elastic-plastic impact in flexible multibody systems. Acta. Mech. Sin. 33(1), 189–199 (2017)MathSciNetzbMATHGoogle Scholar
- 251.Yao, T.Q., Chi, Y.L., Huang, Y.Y., et al.: Research on multibody dynamics and contact vibration of belt transmission. J. Syst. Simul. 21(16), 4945–4950 (2009)Google Scholar
- 252.Bhalerao, K.D., Anderson, K.S.: Modeling intermittent contact for flexible multibody systems. Nonlinear Dyn. 60(1–2), 63–79 (2010)zbMATHGoogle Scholar
- 253.Gao, H., Gan, F., Dai, H.Y.: A dynamic gluing algorithm for rigid-flexible contact problems. J. Vib. Shock 31(23), 123–127 (2012)Google Scholar
- 254.Duan, Y.C., Zhang, D.G.: Flexible multibody system impact dynamics based on elastic-plastic contact. J. Nanjing Univ. Sci. Technol. 36(2), 189–194 (2012)Google Scholar
- 255.Tamarozzi, T., Ziegler, P., Eberhard, P., et al.: On the applicability of static modes switching in gear contact applications. Multibody Syst. Dyn. 30(2), 209–219 (2013)Google Scholar
- 256.Duan, Y.C., Zhang, D.G., Hong, J.Z.: Global Impact Dynamic modeling and verification of a flexible beam with large overall motion. Adv. Mech. Eng. 362317 (2013)Google Scholar
- 257.Yu, H.N., Zhao, J.S., Chu, F.L.: An enhanced multi-point dynamics methodology for collision and contact problem. Proc. Inst.Mech. Eng. C J. Mech. Eng. Sci. 227(6), 1203–1223 (2013)Google Scholar
- 258.Pichler, F., Witteveen, W., Fischer, P.: A complete strategy for efficient and accurate multibody dynamics of flexible structures with large lap joints considering contact and friction. Multibody Syst. Dyn. 40(4), 407–436 (2017)MathSciNetzbMATHGoogle Scholar
- 259.Calì, M., Oliveri, S.M., Sequenzia, G., Fatuzzo, G.: An effective model for the sliding contact forces in a multibody environment. In: Eynard, B., Nigrelli, V., Oliveri, S., Peris-Fajarnes, G., Rizzuti, S. (eds.) Adv. Mech. Des. Eng. Manuf. Lecture Notes in Mechanical Engineering, Springer, Cham (2017)Google Scholar
- 260.Ambrosio, J.A.C., Goncalves, J.P.C.: Vehicle crashworthiness design and analysis by means of nonlinear flexible multibody dynamics. Int. J. Veh. Des. 26(4), 309–330 (2001)Google Scholar
- 261.Ryu, H.S., Huh, K.S., Bae, D.S., et al.: Development of a multibody dynamics simulation tool for tracked vehicles—(Part I, efficient contact and nonlinear dynamic modeling). JSME Int J., Ser. C 46(2), 540–549 (2003)Google Scholar
- 262.Askari, E., Flores, P., Dabirrahmani, D., et al.: Nonlinear vibration and dynamics of ceramic on ceramic artificial hip joints: a spatial multibody modeling. Nonlinear Dyn. 76(2), 1365–1377 (2014)Google Scholar
- 263.You, B.D., Wen, J.M., Zhang, G.Y., et al: Nonlinear dynamic modeling for a flexible laminated composite appendage attached to a spacecraft body undergoing deployment and locking motions. J. Aerosp. Eng. 29(5) (2016)Google Scholar
- 264.Shi, J.B., Liu, Z.Y., Hong, J.Z.: Dynamic contact model of shell for multibody system applications. Multibody Syst. Dyn. 44(4), 335–366 (2018)MathSciNetzbMATHGoogle Scholar
- 265.Schiehlen, W., Seifried, R., Eberhard, P.: Elastoplastic phenomena in multibody impact dynamics. Comput. Methods Appl. Mech. Eng. 195(50–51), 6874–6890 (2006)MathSciNetzbMATHGoogle Scholar
- 266.Dupac, M., Beale, D.G.: Dynamic analysis of a flexible linkage mechanism with cracks and clearance. Mech. Mach. Theory 45(12), 1909–1923 (2010)zbMATHGoogle Scholar
- 267.Rahmanian, S., Ghazavi, M.R.: Bifurcation in planar slider-crank mechanism with revolute clearance joint. Mech. Mach. Theory 91, 86–101 (2015)Google Scholar
- 268.Pereira, C., Flores, P., Ramalho, A., et al.: The influence of contact model, friction and lubrication on the dynamics of cylindrical clearance joints. In: 10th International Conference on Computational Structures Technology. Valencia, Spain (2010)Google Scholar
- 269.Li, P., Chen, W., Li, D.S., et al.: A novel transition model for lubricated revolute joints in planar multibody systems. Multibody Syst. Dyn. 36(3), 279–294 (2016)MathSciNetzbMATHGoogle Scholar
- 270.Lorenz, N., Offner, G., Knaus, O.: Thermal analysis of hydrodynamic lubricated journal bearings in internal combustion engines, Proceedings of the Institution of Mechanical Engineers, Part K-Journal of Multi-body. Dynamics 231(3), 406–419 (2017)Google Scholar
- 271.Meuter, M., Offner, G., Haase, G.: Multi-body engine simulation including elastohydrodynamic lubrication for non-conformal conjunctions. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 231(3), 457–468 (2017)Google Scholar
- 272.Ravn, P., Shivaswamy, S., Alshaer, B.J., et al.: Joint clearances with lubricated long bearings in multibody mechanical systems. J. Mech. Des. 122(4), 484–488 (2000)Google Scholar
- 273.Flores, P., Ambrosio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004)zbMATHGoogle Scholar
- 274.Fang, C.C., Meng, X.H., Lu, Z.J., et al.: Modeling a lubricated full-floating pin bearing in planar multibody systems. Tribol. Int. 131, 222–237 (2019)Google Scholar
- 275.Chen, K., Zhang, G.J., Wu, R., et al.: Dynamic analysis of a planar hydraulic rock-breaker mechanism with multiple clearance joints. Shock Vib. 4718456 (2019)Google Scholar
- 276.Zhao, B., Zhou, K., Xie, Y.B.: A new numerical method for planar multibody system with mixed lubricated revolute joint. Int. J. Mech. Sci. 113, 105–119 (2016)Google Scholar
- 277.Hou, J.H., Yao, G.F., Huang, H.L.: Dynamic analysis of a spatial mechanism including frictionless spherical clearance joint with flexible socket. J. Comput. Nonlinear Dyn. 13(3), 031002 (2018)Google Scholar
- 278.Su, Y.W., Huo, W.N., Chen, W., et al.: Dynamic analysis of multibody system with lubricated revolute joints. Lubr. Eng. 42(3), 18–22 (2017)Google Scholar
- 279.Erkaya, S.: Clearance-induced vibration responses of mechanical systems: computational and experimental investigations. J. Braz. Soc. Mech. Sci. Eng. 40(2): UNSP 90 (2018)Google Scholar
- 280.Tian, Q., Liu, C., Machado, M., et al.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)zbMATHGoogle Scholar
- 281.Tian, Q., Zhang, Y., Chen, L., et al.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010)zbMATHGoogle Scholar
- 282.Tian, Q., Xiao, Q., Sun, Y., et al.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2015)MathSciNetGoogle Scholar
- 283.Tian, Q., Lou, J., Mikkola, A.: A new elastohydrodynamic lubricated spherical joint model for rigid-flexible multibody dynamics. Mech. Mach. Theory 107, 210–228 (2017)Google Scholar
- 284.Jin, C.M., Qiu, Y., Fan, L., et al.: The non-linear dynamic behavior of an elastic linkage mechanism with clearances. J. Sound Vib. 249(2), 213–226 (2002)Google Scholar
- 285.Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Mech. Mach. Theory 53(7), 30–49 (2012)Google Scholar
- 286.Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)zbMATHGoogle Scholar
- 287.Bai, Z.F., Zhao, Y., Wang, X.G.: Wear analysis of revolute joints with clearance in multibody systems. Sci. China Phy. Mech. Astron. 56(8), 1581–1590 (2013)Google Scholar
- 288.Xiang, W.W.K., Yan, S.Z., Wu, J.N.: A comprehensive method for joint wear prediction in planar mechanical systems with clearances considering complex contact conditions. Sci. China Technol. Sci. 58(1), 86–96 (2015)Google Scholar
- 289.Zhao, B., Zhang, Z.N., Dai, X.D.: Modeling and prediction of wear at revolute clearance joints in flexible multibody systems. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228(2), 317–329 (2014)Google Scholar
- 290.Mukras, S., Kim, N.H., Mauntler, N.A., et al.: Comparison between elastic foundation and contact force models in wear analysis of planar multibody system. J. Tribol. 132(3), 1–11 (2010)Google Scholar
- 291.Haneef, M.D., Randall, R.B., Smith, W.A., et al.: Vibration and wear prediction analysis of IC engine bearings by numerical simulation. Wear 384, 15–27 (2017)Google Scholar
- 292.Xu, L.X., Han, Y.C., Dong, Q.B., et al.: An approach for modelling a clearance revolute joint with a constantly updating wear profile in a multibody system: simulation and experiment. Multibody Syst. Dyn. 45(4), 457–478 (2019)MathSciNetGoogle Scholar
- 293.Sandu, A., Sandu, C., Ahmadian, M.: Modeling multibody systems with uncertainties. Part I: theoretical and computational aspects. Multibody Syst. Dyn. 15(4), 369–391 (2006)zbMATHGoogle Scholar
- 294.Walz, N.P., Fischer, M., Hanss, M., et al.: Uncertainties in multibody systems—potentials and challenges. In; International Conference on Noise and Vibration Engineering (ISMA)/International Conference on Uncertainty in Structural Dynamics (USD). Belgium, Leuven (2012)Google Scholar
- 295.He, B.Y., Feng, Y., Wang, S.X.: Study on the dynamics of multibody systems with uncertainty. J. Hebei Univ. Technol. 34(4), 7–14 (2005)Google Scholar
- 296.Jia, R.Y., Wang, T., Jiang, Z.Y., et al.: Uncertainty analysis of the rocket trail cover separation. J. Natl. Univ. Def. Technol. 36(6), 88–92 (2014)Google Scholar
- 297.Yan, S., Guo, P.: Kinematic accuracy analysis of flexible mechanisms with uncertain link lengths and joint clearances. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 225(C8), 1973–1983 (2011)Google Scholar
- 298.Li, J.L., Huang, H.Z., Yan, S.Z., et al.: Kinematic accuracy and dynamic performance of a simple planar space deployable mechanism with joint clearance considering parameter uncertainty. Acta Astronaut. 136, 34–45 (2017)Google Scholar
- 299.Acri, A., Nijman, E., Acri, A.: Influences of system uncertainties on the numerical transfer path analysis of engine systems. Mech. Syst. Signal Process. 95, 106–121 (2017)Google Scholar
- 300.Hays, J., Sandu, A., Sandu, C., et al.: Parametric design optimization of uncertain ordinary differential equation systems. In: ASME International Mechanical Engineering Congress and Exposition (IMECE). Denver, CO (2011)Google Scholar
- 301.Hays, J., Sandu, A., Sandu, C., et al.: Motion planning of uncertain ordinary differential equation systems. J. Comput. Nonlinear Dyn. 9(3), 031021 (2014)Google Scholar
- 302.Sabet, S., Poursina, M.: Forward kinematic analysis of non-deterministic articulated multibody systems with kinematically closed-loops in polynomial chaos expansion scheme. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA (2015)Google Scholar
- 303.Sabet, S., Poursina, M.: Uncertainty analysis of nondeterministic multibody systems. In: ASME International Mechanical Engineering Congress and Exposition (IMECE2016), Phoenix AZ (2016)Google Scholar
- 304.Wu, J.L., Luo, Z., Zhang, N., et al.: Dynamic computation of flexible multibody system with uncertain material properties. Nonlinear Dyn. 85(2), 1231–1254 (2016)zbMATHGoogle Scholar
- 305.Wu, J.L., Luo, Z., Zhang, N., et al.: Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties. Mech. Syst. Signal Process. 85, 487–511 (2017)Google Scholar
- 306.Rong, B., Rui, X.T., Tao, L., et al.: Perturbation finite element transfer matrix method for random eigenvalue problems of uncertain structures. J. Appl. Mech. 79(2), 021005 (2012)Google Scholar
- 307.Zhang, J., Wang, G.P., Rui, X.T.: Vibration analysis of systems with random parameters using perturbation transfer matrix method. J., Mach. Des. 32(10), 86–90 (2015)Google Scholar
- 308.Chen, W.D., Yu, Y.C., Jia, P., et al.: Application of finite volume method to structural stochastic dynamics. Adv. Mech. Eng. 391704 (2013)Google Scholar
- 309.Wang, G.P., Rui, X.T., Rong, B.: Evaluation of PDF of eigenvalue for multibody system with random parameters. In: 4th International Conference on Mechanical Engineering and Mechanics. Suzhou, China (2011)Google Scholar
- 310.Batou, A., Soize, C.: Rigid multibody system dynamics with uncertain rigid bodies. Multibody Syst. Dyn. 27(3), 285–319 (2012)MathSciNetzbMATHGoogle Scholar
- 311.Batou, A., Soize, C.: Random dynamical response of a multibody system with uncertain rigid bodies. Comput. Methods Stoch. Dyn. 26, 1–14 (2013)MathSciNetzbMATHGoogle Scholar
- 312.Alemayehu, F.M., Ekwaro-Osire, S.: Uncertainty considerations in the dynamics of gear-pair. In; ASME International Mechanical Engineering Congress and Exposition, Houston, TX (2012)Google Scholar
- 313.Alemayehu, F.M., Ekwaro-Osire, S.: Uncertainty considerations in the dynamic loading and failure of spur gear pairs. J. Mech. Des. 135(8), 084501 (2013)Google Scholar
- 314.Zhao, K., Chen, J.J., Yan, B., et al.: Dynamic analysis of multibody systems with probabilistic parameters. Chin. J. Theoret. Appl. Mech. 44(4), 802–806 (2012)Google Scholar
- 315.Wanichanon, T., Cho, H., Udwadia, F.E.: An approach to the dynamics and control of uncertain multi-body systems. In: IUTAM Symposium on Dynamical Analysis of Multibody Systems with Design Uncertainties, Stuttgart, Germany (2014)Google Scholar
- 316.Zha, Q.C., Rui, X.T., Yu, H.L., et al.: Study on the impact sensitivity of firing factors of self-propelled gun. J. Vib. Eng. 30(6), 938–946 (2017)Google Scholar
- 317.Wasfy, T.M., Noor, A.K.: Finite element analysis of flexible multibody systems with fuzzy parameters. Comput. Methods Appl. Mech. Eng. 160, 223–243 (1998)zbMATHGoogle Scholar
- 318.Yu, L.C.: Fuzzy RSM of flexible mechanism reliability analysis. J. Detect. Control 32(3), 87–90 (2010)Google Scholar
- 319.Wang, Z., Tian, Q., Hu, H.Y.: Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance. Nonlinear Dyn. 86(3), 1571–1597 (2016)Google Scholar
- 320.Xin P.F., Rong, J.L., Xiang, Y., et al.: Uncertainty analysis with interval parameters for flexible space manipulator. Trans. Beijing Inst. Technol. 37(10) (2017)Google Scholar
- 321.Wu, J.L., Zhang, Y.Q.: The dynamic analysis of multibody systems with uncertain parameters using interval method. Appl. Mech. Mater. 152–154, 1555–1561 (2012)Google Scholar
- 322.Wang, Z., Tian, Q., Hu, H.Y.: Dynamics of spatial rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84, 527–548 (2016)MathSciNetzbMATHGoogle Scholar
- 323.Feng, Y.J.: Uncertainty analysis of multibody dynamics based on metamodels, Master Dissertation. Nanjing University of Aeronautics and Astronautics, Nanjing (2013)Google Scholar
- 324.Koganti, P.B., Udwadia, F.E.: Dynamics and precision control of uncertain tumbling multibody systems. J. Guid. Control Dyn. 40(5), 1176–1190 (2017)Google Scholar
- 325.Wang, Z., Tian, Q., Hu, H.Y.: Dynamics study and sensitivity analysis of flexible multibody systems with interval parameters. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC (2016)Google Scholar
- 326.Wu, J.L., Luo, Z., Zhang, Y.Q., et al.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Meth. Eng. 95(7), 608–630 (2013)MathSciNetzbMATHGoogle Scholar
- 327.Zhan, Z.H., Zhang, X.M., Jian, Z.C.: Error modelling and motion reliability analysis of a planar parallel manipulator with multiple uncertainties. Mech. Mach. Theory 124, 55–72 (2018)Google Scholar
- 328.Wang, Z., Tian, Q., Hu, H.Y.: Dynamics of flexible multibody systems with hybrid uncertain parameters. Mech. Mach. Theory 121, 128–147 (2018)Google Scholar
- 329.Sun, D.Y., Chen, G.P.: Kinematic accuracy analysis of planar mechanisms with clearance involving random and epistemic uncertainty. Eur. J. Mech. A. Solids 58, 256–261 (2016)MathSciNetzbMATHGoogle Scholar
- 330.Wang, J., Liu, J.Y.: Rigid-flexible-thermal coupling dynamic analysis of flexible multi-body system. Chin. J. Appl. Mech. 29(5), 501–507 (2012)Google Scholar
- 331.Wu, J., Zhao, Z.H., Ren, G.X., et al.: Thermal-structural coupled tube element of multibody dynamics and its application. Eng. Mech. 30(11), 28–35 (2013)Google Scholar
- 332.You, B.D., Zhang, H.B., Wang, P.X., et al.: Satellite antenna dynamics and control with thermal effect. Aircr. Eng. Aerosp. Technol. 87(3), 274–283 (2015)Google Scholar
- 333.Grujicic, M., Arakere, G., Nallagatla, H., et al.: Computational investigation of blast survivability and off-road performance of an up-armoured high-mobility multi-purpose wheeled vehicle. Proc. Inst. Mech. Eng. D J. Automob. Eng. 223(D3), 301–325 (2009)Google Scholar
- 334.Cui, T., Zhang, W.H., Zhang, S.G., et al.: Study on the fluid-solid coupling vibration of train passing through platform at high speed. China Railw. Sci. 31(2), 50–55 (2010)Google Scholar
- 335.Cavagna, L., Masarati, P., Quaranta, G.: Coupled multibody/computational fluid dynamics simulation of maneuvering flexible aircraft. J. Aircr. 48(1), 92–106 (2011)Google Scholar
- 336.Chen, J.P., Zhou, R.R., Yu, W.J.: Dynamic response of liquid-multibody interaction problems in liquid-filled systems. Acta. Mech. Sin. 36(6), 724–731 (2004)Google Scholar
- 337.Sun, H.L.: Research on recursive dynamics of rigid-flexible-liquid coupling mechanical multibody systems, Ph.D. Dissertation, Nanjing: Nanjing University of Aeronautics and Astronautics (2011)Google Scholar
- 338.Fan, W.: Multi-field Coupling Dynamics For Multi-body System. Master Dissertation. Shanghai Jiao Tong University, Shanghai (2013)Google Scholar
- 339.Alioli, M., Morandini, M., Masarati, P.: Coupled multibody-fluid dynamics simulation of flapping wings. In; ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE), Portland, OR (2013)Google Scholar
- 340.Park, J.S., Sa, J.H., Park, S.H., et al.: Loosely coupled multibody dynamics-CFD analysis for a rotor in descending flight. Aerosp. Sci. Technol. 29(1), 262–276 (2013)Google Scholar
- 341.Li, Y., Castro, A.M., Sinokrot, T., et al.: Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence. Renewab. Energy 76, 338–361 (2015)Google Scholar
- 342.Li, Y., Castro, A.M., Martin, J.E., et al.: Coupled computational fluid dynamics/multibody dynamics method for wind turbine aero-servo-elastic simulation including drivetrain dynamics. Renewa. Energy 101, 1037–1051 (2017)Google Scholar
- 343.Gao, X.L.: Research on Multibody Dynamics and Fluid-structure Interaction of Parachute-body System, Ph.D. Dissertation, ChangSha: National University of Defense Technology (2016)Google Scholar
- 344.Liu, F., Liu, G., Jiang, X.: Simulation of aerial refueling system with multibody dynamics and CFD. Acta Aerodyn. Sin. 34(2), 276–280 (2016)Google Scholar
- 345.Schorgenhumer, M., Gruber, P.G., Gerstmayr, J.: Interaction of flexible multibody systems with fluids analyzed by means of smoothed particle hydrodynamics. Multibody Syst. Dyn. 30(1), 53–76 (2013)MathSciNetGoogle Scholar
- 346.Kim, S.P., Park, J.C., Sohn, J.H.: Co-simulation of fluid-multibody dynamics of sloshing flows with spring-damper system. Korean Soc. Comput. Fluids Eng. 22(4), 103–108 (2017)Google Scholar
- 347.Hu, W., Tian, Q., Hu, H.Y.: Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid. Sci. China Phy. Mech. Astron. 61(4), 044711 (2018)Google Scholar
- 348.Wasfy, T.M., Wasfy, H.M., Peters, J.M.: Coupled multibody dynamics and smoothed particle hydrodynamics for modeling vehicle water fording. In; ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA (2015)Google Scholar
- 349.Schorgenhumer, M., Humer, A., Gerstmayr, J.: Efficient fluid-structure interaction based on modally reduced multibody systems and smoothed particle hydrodynamics. In; 11th World Congress on Computational Mechanics (WCCM)/5th European Conference on Computational Mechanics (ECCM)/6th European Conference on Computational Fluid Dynamics (ECFD), Barcelona, Spain (2014)Google Scholar
- 350.Lutzenberger, S., Weissenfels, C.: Coupling of moving, actively controlled maglev vehicles and guide way systems: Algorithm and simulation. In: 6th International Conference on Structural Dynamics. France, Paris (2005)Google Scholar
- 351.Deng, Y., Wei, Q.C., Ni, Y.J., et al.: Modeling and simulation of high-speed Maglev vehicle/guideway/ bridge coupling system. In: 26th Chinese Control Conference. Zhangjiajie, China (2007)Google Scholar
- 352.Liang, D., Song, Y.M., Sun, T., et al.: Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes. Mech. Syst. Signal Process. 103, 413–439 (2018)Google Scholar
- 353.Gao, M.M., Pan, J.Y.: Coupling vibration analysis for train-track-bridge system. Struct. Dyn. 1–3, 1069–1075 (2005)Google Scholar
- 354.Li, T., Zhang, J.Y., Zhang, W.H.: Coupling dynamics performance of vehicle-track under cross wind. J. Traffic Transp. Eng. 11(5), 55–60 (2011)Google Scholar
- 355.Barrios, G.K.P., Tavares, L.M.: A preliminary model of high pressure roll grinding using the discrete element method and multi-body dynamics coupling. Int. J. Miner. Process. 56(SI): 32-42 (2016)Google Scholar
- 356.Busch, M., Schweizer, B.: Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach. Arch. Appl. Mech. 82(6), 723–741 (2012)zbMATHGoogle Scholar
- 357.Lin, T.J., He, Z.Y., Zhong, S., et al.: Multi-body dynamic simulation and vibro-acoustic coupling analysis of marine gearbox. J. Hunan Univ. Natl. Sci. 42(2), 22–28 (2015)Google Scholar
- 358.Fleissner, F., Lehnart, A., Eberhard, P.: Dynamic simulation of sloshing fluid and granular cargo in transport vehicles. Veh. Syst. Dyn. 48(1), 3–15 (2010)Google Scholar
- 359.Eun, W., Kim, J., Kwon, O.J., et al.: Coupled analysis of thermo-fluid-flexible multi-body dynamics of a two-dimensional engine nozzle. Int. J. Aeronaut. Space Sci. 18(1), 70–81 (2017)Google Scholar
- 360.Hashemi, S., Kroker, A., Bobach, L., et al.: Multibody dynamics of pivot slipper pad thrust bearing in axial piston machines incorporating thermal elastohydrodynamics and mixed lubrication model. Tribol. Int. 96, 57–76 (2016)Google Scholar
- 361.Yue, B.Z.: Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft. AIAA J. 49(10), 2090–2099 (2011)zbMATHGoogle Scholar
- 362.Lu, J.: Study on nonlinear dynamics of a liquid-filled spacecraft with flexible appendages, Ph.D. Dissertation, Beijing: Tsinghua University (2006)Google Scholar
- 363.Bauchau, O.A.: Computational schemes for flexible, nonlinear multi-body systems. Multibody Syst. Dyn. 2(2), 169–225 (1998)MathSciNetzbMATHGoogle Scholar
- 364.Wang, Q., Lu, Q.S.: Advances in the numerical methods for Lagrange’s equations of multibody systems, 2001. Adv. Mech. 31(1), 9–17 (2001)Google Scholar
- 365.Wang, G.P.: Numerical algorithms of multibody system dynamics. Comput. Simul. 23(12), 86–89 (2006)Google Scholar
- 366.Rong, B., Rui, X.T., Wang, G.P.: Developments of studies on multibody system dynamics. J. Vib. Shock 30(7), 178–187 (2011)Google Scholar
- 367.Fu, F.F.: Research on numerical methods of differential / algebraic equations for multibody system dynamics. In: 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT). Beijing, China (2017)Google Scholar
- 368.Katsikadelis, J.T.: A new direct time integration method for the equations of motion in structural dynamics. Z. Angew. Math. Mech. 94(9), 757–774 (2014)MathSciNetzbMATHGoogle Scholar
- 369.Jia, C.G., Li, Y.M., Xia, H.L., et al.: Novel partitioned integration method based on Newmark’s scheme for structural dynamic problems. Appl. Mech. Mater. 580–583, 2996–3002 (2014)Google Scholar
- 370.Gavrea, B., Negrut, D., Potra, F.A.: The Newmark integration method for simulation of multibody systems: Analytical considerations. In: ASME International Mechanical Engineering Congress and Exposition, Orlando, FL (2005)Google Scholar
- 371.Xiong, X.G., Kikuuwe, R., Yamamoto, M.: A differential algebraic method to approximate nonsmooth mechanical systems by ordinary differential equations. J. Appl. Math. 320276 (2013)Google Scholar
- 372.Qian, S.L., He, B., Yao, L.K., et al.: Improved finite element transfer matrix method of plane beam elements using the absolute nodal coordinate formulation. J. Mech. Strength 38(3), 575–579 (2016)Google Scholar
- 373.D’Ambrosio, R., Ferro, M., Paternoster, B.: Collocation-based two step Runge-Kutta methods for ordinary differential equations. In: International Conference on Computational Science and Its Applications (ICCSA 2008). Perugia, Italy (2008)Google Scholar
- 374.Butcher, J.C.: Runge-Kutta methods for ordinary differential equations. In: 3rd International Conference on Numerical Analysis and Optimization- Theory, Methods, Applications and Technology Transfer, Muscat, Oman (2014)Google Scholar
- 375.Haug, E.J.: An ordinary differential equation formulation for multibody dynamics: holonomic constraints. J. Comput. Inf. Sci. Eng. 16(2), 021007 (2016)Google Scholar
- 376.Othman, K.I., Ibrahim, Z.B., Suleiman, M., et al.: Automatic intervalwise block partitioning using Adams type method and backward differentiation formula for solving ODEs. Appl. Math. Comput. 188(2), 1642–1646 (2007)MathSciNetzbMATHGoogle Scholar
- 377.Blasik, M.: A new variant of Adams - Bashforth - Moulton method to solve sequential fractional ordinary differential equation. In; 21st International Conference on Methods and Models in Automation and Robotics (MMAR). Miedzyzdroje, Poland (2016)Google Scholar
- 378.Feng, B.P.: The Gear program for solving initial value problems in general or stiff ordinary differential equations. J. Numer. Methods Comput. Appl. 1, 12–23 (1982)MathSciNetGoogle Scholar
- 379.Nejad, L.A.M.: A comparison of stiff ODE solvers for astrochemical kinetics problems. Astrophys. Space Sci. 299(1), 1–29 (2005)zbMATHGoogle Scholar
- 380.Rill, G.: A modified implicit Euler algorithm for solving vehicle dynamic equations. Multibody Syst. Dyn. 15, 1–24 (2006)zbMATHGoogle Scholar
- 381.Bursi, O.S., He, L., Bonelli, A., et al.: Novel generalized-alpha methods for interfield parallel integration of heterogeneous structural dynamic systems. J. Comput. Appl. Math. 234(7), 2250–2258 (2010)MathSciNetzbMATHGoogle Scholar
- 382.Attili, B.S.: The Hilber-Hughes-Taylor-alpha (HHT-alpha) method compared with an implicit Runge-Kutta for second-order systems. Int. J. Comput. Math. 87(8), 1755–1767 (2010)MathSciNetzbMATHGoogle Scholar
- 383.Weber, S., Arnold, M., Valasek, M.: Quasistatic approximations for stiff second order differential equations. Appl. Numer. Math. 62(10), 1579–1590 (2012)MathSciNetzbMATHGoogle Scholar
- 384.Wang, X.M.: Research of numerical solution for dynamics of multibody systems, Master Dissertation. Xidian University, Xi’An (2009)Google Scholar
- 385.Pan, ZhK, Sun, H.Q., Zang, H.W., et al.: Numerical methods for stiff differential equations of flexible multibody system dynamics. J. Qingdao Univ. 11(3), 36–39 (1996)Google Scholar
- 386.Zhong, W.X.: Precise computation for transient analysis. Comput. Struct. Mech. Appl. 12(1), 1–6 (1995)MathSciNetGoogle Scholar
- 387.Lv, H.X., Yu, H.J., Qiu, C.H.: An analytical step-by-step integral procedure of dynamics equations. Eng. Mech. 18(5), 1–7 (2001)Google Scholar
- 388.Lv, H.X., Yu, H.J., Qiu, C.H.: Direct integration methods with integral model for dynamic systems. Appl. Math. Mech. 22(2), 151–156 (2001)MathSciNetGoogle Scholar
- 389.Liu, T.L., Liu, J.Y.: A step-by-step integration method based on principle of minimum transformed energy. Eng. Mech. 22(2), 1–24 (2005)MathSciNetGoogle Scholar
- 390.Oghbaei, M., Anderson, K.S.: A new time-finite-element implicit integration scheme for multibody system dynamics simulation. Comput. Methods Appl. Mech. Eng. 195, 7006–7019 (2006)MathSciNetzbMATHGoogle Scholar
- 391.Pu, J.P.: Numerical computation for structural dynamic responses based on a highly accurate differential quadrature method. J. Nanjing Univ. Aeronaut. Astronaut. 36(3), 151–156 (2004)MathSciNetGoogle Scholar
- 392.Wang, Y.F., Chu, D.W.: A coupled precise and finite difference time integration method for structural dynamics. Acta Mech. Solida Sin. 24(4), 469–474 (2003)Google Scholar
- 393.Zou, P., Qu, X.G.: Quasi wavelet-precise time-integration method for solving the vibration problems of beam. J. Shaanxi Univ. Sci. Technol. 29(6), 140–143 (2011)Google Scholar
- 394.Pan, Y.H., Wang, Y.F.: Gauss precise time-integration of complex damping vibration systems. Eng. Mech. 29(2), 16–20 (2012)Google Scholar
- 395.Gransden, D., Bornemann, P., Rose, M., et al.: A constrained generalised-alpha method for coupling rigid parallel chain kinematics and elastic bodies. Comput. Mech. 55(3), 527–541 (2015)MathSciNetzbMATHGoogle Scholar
- 396.Parida, N.C., Raha, S.: Regularized numerical integration of multibody dynamics with the generalized alpha method. Appl. Math. Comput. 215(3), 1224–1243 (2009)MathSciNetzbMATHGoogle Scholar
- 397.Kobis, M.A., Arnold, M.: Convergence of generalized-alpha time integration for nonlinear systems with stiff potential forces. Multibody Syst. Dyn. 37(1), 107–125 (2016)MathSciNetzbMATHGoogle Scholar
- 398.Shabana, A.A., Hussein, B.A.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: Application to multibody systems. J. Sound Vib. 327(3–5), 557–563 (2009)Google Scholar
- 399.Zhang, L., Zhang, D.G.: Two-loop implicit integration method based on backward differential formulation for differential-algebraic equations of multibody system dynamics. J. Mech. Eng. 52(7), 79–87 (2016)Google Scholar
- 400.Wang, J.L., Rodriguez, J., Keribar, R.: Integration of flexible multibody systems using Radau IIA algorithms. J. Comput. Nonlinear Dyn. 5(4), 041008 (2010)Google Scholar
- 401.Ma, X.T., Zhai, Y.B., Luo, S.Q.: Numerical method of multibody dynamics based on theta1 method. Chin. J. Theoret. Appl. Mech. 43(5), 931–938 (2011)Google Scholar
- 402.Ding, J.Y., Pan, Z.K., Chen, L.Q.: Generalized-alpha-SSF method for ODAEs of multibody dynamics. In: 14th Asia Pacific Vibration Conference (APVC) on Dynamics for Sustainable Engineering. China, Hong Kong (2011)Google Scholar
- 403.Liu, Y., Ma, J.M.: Discrete null space method for the Newmark integration of multibody dynamic systems. Chin. J. Mech. Eng. 48(5), 87–91 (2012)Google Scholar
- 404.Liu, Y., Ma, J.M.: Improved discrete null space method for dynamics analysis constrained multibody systems. Chin. J. Comput. Mech. 30(4), 496–501 (2013)Google Scholar
- 405.Milenkovic, P.: Multi-integral method for solving the forward dynamics of stiff multibody systems. J. Dyn. Syst. Meas. Control 135(5): 051014 (2013)Google Scholar
- 406.Ma, X.T., Zhai, Y.B., Luo, S.Q.: Dynamics simulation of multi-body system based on backward differentiation formulas. Comput. Integr. Manuf. Syst. 19(1), 119–126 (2013)Google Scholar
- 407.Milenkovic, P.: Numerical solution of stiff multibody dynamic systems based on kinematic derivatives. J. Dyn. Syst. Meas. Control 136(6), 061001 (2014)Google Scholar
- 408.Wang, J.L., Li, Z.G.: Implementation of HHT algorithm for numerical integration of multibody dynamics with holonomic constraints. Nonlinear Dyn. 80(1–2), 817–825 (2015)MathSciNetGoogle Scholar
- 409.Prescott, W.: Application of scaling to multibody dynamics simulations. In: ASME International Mechanical Engineering Congress and Exposition (IMECE2015). Houston, TX (2015)Google Scholar
- 410.Ding, J.Y.: Genetic algorithm for design optimization of multibody dynamics using differential-algebraic equation integrators. Adv. Mech. Eng. 7(4), 1687814015581260 (2015)Google Scholar
- 411.Sun, W.: Numerical algorithms for differential-algebraic equations of multibody dynamics. In: 16th International Conference on Control, Automation and Systems (ICCAS). Gyeongju, South Korea (2016)Google Scholar
- 412.Carpinelli, M., Gubitosa, M., Mundo, D.: Automated independent coordinates’ switching for the solution of stiff DAEs with the linearly implicit Euler method. Multibody Syst. Dyn. 36(1), 67–85 (2016)MathSciNetzbMATHGoogle Scholar
- 413.Sommer, H.J.: Third-order differential-algebraic equations for improved integration of multibody dynamics. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE 2017). Cleveland, OH (2017)Google Scholar
- 414.Haug, E.: An index 0 Differential-Algebraic equation formulation for multibody dynamics: Holonomic constraints. Mech. Based Des. Struct. Mach. 45(4), 479–506 (2017)Google Scholar
- 415.Krinner, A., Schindler, T., Rixen, D.J.: Time integration of mechanical systems with elastohydrodynamic lubricated joints using Quasi-Newton method and projection formulations. Int. J. Numer. Meth. Eng. 110(6), 523–548 (2017)MathSciNetzbMATHGoogle Scholar
- 416.Uhlar, S., Betsch, P.: On the derivation of energy consistent time stepping schemes for friction afflicted multibody systems. Comput. Struct. 88(11–12), 737–754 (2010)Google Scholar
- 417.Arnold, M., Hante, S.: Implementation details of a generalized-\(\alpha \) differential-algebraic equation Lie group method. J. Comput. Nonlinear Dyn. 12(2), 021002 (2016)Google Scholar
- 418.Arnold, M., Cardona, A., Bruls, O.: Order reduction in time integration caused by velocity projection. J. Mech. Sci. Technol. 29(7), 2579–2585 (2015)Google Scholar
- 419.Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech. Mach. Theory 48, 121–137 (2012)Google Scholar
- 420.Ding, J.Y., Pan, Z.K.: The Lie group Euler methods of multibody system dynamics with holonomic constraints. Adv. Mech. Eng. 10(4), 168781401876415 (2018)Google Scholar
- 421.Negrut, D., Jay, L.O., Khude, N.: A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics. J. Comput. Nonlinear Dyn. 4(2), 021008 (2009)Google Scholar
- 422.Betsch, P., Hesch, C., Sanger, N., et al.: Variational integrators and energy-momentum schemes for flexible multibody dynamics. J. Comput. Nonlinear Dyn. 5(3), 031001 (2010)Google Scholar
- 423.Huang, Y.G., Yin, Z.P., Deng, Z.C., et al.: Progress in Geometric integration method for multibody dynamics. Adv. Mech. 39(1), 44–57 (2009)Google Scholar
- 424.Juan, C.: García Orden, Energy considerations for the stabilization of constrained mechanical systems with velocity projection. Nonlinear Dyn. 60(1–2), 49–62 (2010)Google Scholar
- 425.Flores, P., Machado, M., Seabra, E., et al.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011019 (2010)Google Scholar
- 426.Hussein, B.A., Shabana, A.A.: Sparse matrix implicit numerical integration of the stiff differential/algebraic equations: Implementation. Nonlinear Dyn. 65(4), 369–382 (2011)MathSciNetGoogle Scholar
- 427.Lin, S.T., Chen, M.W.: A PID type constraint stabilization method for numerical Integration of multibody systems. J. Comput. Nonlinear Dyn. 6(4), 044501 (2011)Google Scholar
- 428.Liu, Y., Ma, J.M.: Adaptive feedback parameters for Baumgartes constraint violation stabilization methods of multibody systems equations of motion. J. Fudan Univ. Nat. Sci. 51(4), 432–436 (2012)MathSciNetGoogle Scholar
- 429.Orden, J.C.G., Martin, S.C.: Controllable velocity projection for constraint stabilization in multibody dynamics. Nonlinear Dyn. 68(1–2), 245–257 (2012)MathSciNetzbMATHGoogle Scholar
- 430.Ding, J.Y., Pan, Z.K.: Generalized-alpha projection method for differential-algebraic equations of multibody dynamics. Eng. Mech. 30(4), 380–384 (2013)Google Scholar
- 431.Schweizer, B., Li, P.: Solving differential-algebraic equation systems: alternative index-2 and index-1 approaches for constrained mechanical systems. J. Comput. Nonlinear Dyn. 11(4), 044501 (2015)Google Scholar
- 432.Wei, Y., Deng, Z.C., Li, Q.J., et al.: Projected Runge-Kutta methods for constrained Hamiltonian systems. Appl. Math. Mech. 37(8), 1077–1094 (2016)MathSciNetzbMATHGoogle Scholar
- 433.Omar, M.A.: Modeling and simulation of structural components in recursive closed-loop multibody systems. Multibody Syst. Dyn. 41(1), 47–74 (2017)MathSciNetzbMATHGoogle Scholar
- 434.Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)MathSciNetzbMATHGoogle Scholar
- 435.Melanz, D., Fang, L.N., Jayakumar, P., et al.: A comparison of numerical methods for solving multibody dynamics problems with frictional contact modeled via differential variational inequalities. Comput. Methods Appl. Mech. Eng. 320(15), 668–693 (2017)MathSciNetGoogle Scholar
- 436.Haddouni, M., Acary, V., Garreau, S., et al.: Comparison of several formulations and integration methods for the resolution of DAEs formulations in event-driven simulation of nonsmooth frictionless multibody dynamics. Multibody Syst. Dyn. 41(3), 201–231 (2017)MathSciNetGoogle Scholar
- 437.Lee, K.S.: A stabilized numerical solution for the dynamic contact of the bodies having very stiff constraint on the contact point. Comput. Mech. 46(4), 533–543 (2010)zbMATHGoogle Scholar
- 438.Lee, K.S.: A short note for numerical analysis of dynamic contact considering impact and a very stiff spring-damper constraint on the contact point. Multibody Syst. Dyn. 26(4), 425–439 (2011)MathSciNetzbMATHGoogle Scholar
- 439.Schindler, T., Rezaei, S., Kursawe, J., et al.: Half-explicit time stepping schemes on velocity level based on time-discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 290, 250–276 (2015)zbMATHGoogle Scholar
- 440.Guo, X., Zhang, D.G., Chen, S.J.: Application of Hilber-Hughes-Taylor-alpha method to dynamics of flexible multibody system with contact and constraint. Acta Phys. Sin. 66(16), 164501 (2017)Google Scholar
- 441.He, B., Rui, X.T., Wang, G.P.: Riccati discrete time transfer matrix method for elastic beam undergoing large overall motion. Multibody Syst. Dyn. 18(4), 579–598 (2007)MathSciNetzbMATHGoogle Scholar
- 442.Rong, B., Rui, X.T., Wang, G.P., et al.: Modified finite element transfer matrix method for eigenvalue problem of flexible structures. J. Appl. Mech. 78(2), 021016 (2011)Google Scholar
- 443.Horner, G.C.: The Riccati transfer matrix method, Ph.D. dissertation, University of Virginia, USA (1975)Google Scholar
- 444.Vyasarayani, C.P., Uchida, T., McPhee, J.: Parameter identification in multibody systems using Lie series solutions and symbolic computation. J. Comput. Nonlinear Dyn. 6(4), 041011 (2011)Google Scholar
- 445.Dallali, H., Mosadeghzad, M., Medrano-Cerda, G.A., et al.: Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach. In: IEEE International Conference on Mechatronics (ICM). Vicenza, Italy (2013)Google Scholar
- 446.Gede, G., Peterson, D.L., Nanjangud, A.S.: Constrained multibody dynamics with Python: from symbolic equation generation to publication. In: ASME International Design Engineering Technical Conferences / Computers and Information in Engineering Conference (IDETC/CIE). Portland, OR (2013)Google Scholar
- 447.Hall, A., Schmitke, C., McPhee, J.: Symbolic formulation of a path-following joint for multibody dynamics. In: ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC). Buffalo, NY (2014)Google Scholar
- 448.Burkhardt, M., Seifried, R., Eberhard, P.: Aspects of symbolic formulations in flexible multibody systems. J. Comput. Nonlinear Dyn. 9(4), 041013 (2014)Google Scholar
- 449.Wang, E.X., Zou, J.C., Xue, G.P., et al.: Development of efficient nonlinear benchmark bicycle dynamics for control applications. IEEE Trans. Intell. Transp. Syst. 16(4), 2236–2246 (2015)Google Scholar
- 450.Peterson, D.L., Gede, G., Hubbard, M.: Symbolic linearization of equations of motion of constrained multibody systems. Multibody Syst. Dyn. 33(2), 143–161 (2015)MathSciNetzbMATHGoogle Scholar
- 451.Banerjee, J., McPhee, J.: Graph-theoretic sensitivity analysis of multi-domain dynamic systems: theory and symbolic computer implementation. Nonlinear Dyn. 85(1), 203–227 (2016)MathSciNetGoogle Scholar
- 452.Ali, S.: A unified dynamic algorithm for wheeled multibody systems with passive joints and nonholonomic constraints. Multibody Syst. Dyn. 41(4), 317–346 (2017)MathSciNetzbMATHGoogle Scholar
- 453.Lot, R., Massaro, M.: A symbolic approach to the multibody modeling of road vehicles. Int. J. Appl. Mech. 09, 1750068 (2017)Google Scholar
- 454.Mauny, J., Porez, M., Boyer, F.: Symbolic dynamic modelling of locomotion systems with persistent contacts—Application to the 3D Bicycle. IFAC-PapersOnLine 50(1), 7598–7605 (2017)Google Scholar
- 455.Ros, J., Plaza, A., Iriarte, X., et al.: Symbolic multibody methods for real-time simulation of railway vehicles. Multibody Syst. Dyn. 42(4), 469–493 (2018)MathSciNetGoogle Scholar
- 456.Zhang, J.: Modeling and numerical solution for dynamic system of spatial multi rigid bodies and shell structure with large deformation, Ph.D. dissertation, Beijing: Tsinghua University, China (2015)Google Scholar
- 457.Yenduri, A., Ghoshal, R., Jaiman, R.K.: A new partitioned staggered scheme for flexible multibody interactions with strong inertial effects. Comput. Methods Appl. Mech. Eng. 315, 316–347 (2017)MathSciNetGoogle Scholar
- 458.Shokouhfar, S., Khorsandijou, S.M.: Developing a numerical simulation software for 3D multibody systems based on a unified computational modeling technique. In: 7th International Conference on Multibody Systems. Nonlinear Dynamics and Control, San Diego, CA (2009)Google Scholar
- 459.Ding, J.Y., Pan, Z.K.: Adaptive time integration method for DAES of multibody systems. In: ASME International Mechanical Engineering Congress and Exposition, Houston, TX (2012)Google Scholar
- 460.Acary, V.: Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts. Appl. Numer. Math. 62(10), 1259–1275 (2012)MathSciNetzbMATHGoogle Scholar
- 461.Arnold, M.: Multi-rate time integration for large scale multibody system models. In: UTAM Symposium on Multiscale Problems in Multibody System Contacts. Springer, pp. 1–10 (2006)Google Scholar
- 462.Miao, J.C., Zhu, P., Shi, G.L., Chen, G.L.: Study on sub-cycling algorithm for flexible multi-body system-integral theory and implementation flow chart. Comput. Mech. 41, 257–268 (2008)zbMATHGoogle Scholar
- 463.Miao, J.C., Zhu, P., Shi, G.L., Chen, G.L.: Study on sub-cycling algorithm for flexible multi-body system: stability analysis and numerical examples. Comput. Mech. 41, 269–277 (2008)zbMATHGoogle Scholar
- 464.Metaxas, D., Koh, E.: Flexible multibody dynamics and adaptive finite element techniques for model synthesis and estimation. Comput. Methods Appl. Mech. Eng. 136(1–2), 1–25 (1996)zbMATHGoogle Scholar
- 465.Espinosa, H.D., Zavattieri, P.D., Emore, G.L.: Adaptive FEM computation of geometric and material nonlinearities with application to brittle failure. Mech. Mater. 29(3–4), 275–305 (1998)Google Scholar
- 466.Ma, Z.D., Perkins, N.C.: A super-element of track-wheel-terrain interaction for dynamic simulation of tracked vehicles. Multibody Syst. Dyn. 15(4), 347–368 (2006)zbMATHGoogle Scholar
- 467.Li, Q., Wang, T.S.: Adaptive mode method in inverse dynamics of a rotating flexible manipulator with high-frequency excitation. Chin. J. Space Sci. 28(4), 345–349 (2008)MathSciNetGoogle Scholar
- 468.Gundling, C., Sitaraman, J., Roget, B., et al.: Application and validation of incrementally complex models for wind turbine aerodynamics, isolated wind turbine in uniform inflow conditions. Wind Energy 18(11), 1893–1916 (2015)Google Scholar
- 469.DeBenedictis, A., Atherton, T.J., Rodarte, A.L., et al.: Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh. Phys. Rev. 97(3), 032701 (2018)Google Scholar
- 470.Valentin, J., Sprenger, M., Pfluger, D., et al.: Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models. Int. J. Numer. Methods Biomed. Eng. 34(5), e2965 (2018)MathSciNetGoogle Scholar
- 471.Gravouil, A., Combescure, A., Brun, M.: Heterogeneous asynchronous time integrators for computational structural dynamics. Int. J. Numer. Meth. Eng. 102(3–4), 202–232 (2015)MathSciNetzbMATHGoogle Scholar
- 472.Fekak, F.E., Brun, M., Gravouil, A., et al.: A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics. Comput. Mech. 60(1), 1–21 (2017)MathSciNetzbMATHGoogle Scholar
- 473.Lunk, C., Simeon, B.: The reverse method of lines in flexible multibody dynamics. In: 14th European Conference for Mathematics in Industry. Leganes, Spain (2006)Google Scholar
- 474.Koziara, T., Bicanic, N.: A distributed memory parallel multibody contact dynamics code. Int. J. Numer. Meth. Eng. 87(1–5), 437–456 (2011)zbMATHGoogle Scholar
- 475.Sohn, J.H.: Calculation effect of GPU parallel programing for planar multibody system dynamics. J. Korean Soc. Power Syst. Eng. 16(4), 12–16 (2012)MathSciNetGoogle Scholar
- 476.Melanz, D., Khude, N., Jayakumar, P., et al.: A GPU parallelization of the absolute nodal coordinate formulation for applications in flexible multibody dynamics. In: ASME International Design Engineering Technical Conferences/Computers Information in Engineering Conference, Chicago, IL (2012)Google Scholar
- 477.Cao, D.Z., Qiang, H.F., Ren, G.X.: Parallel computing studies of flexible multibody system dynamics using OpenMP and Pardiso. J. Tsinghua Univ. Sci. Technol. 52(11), 1643–1649 (2012)Google Scholar
- 478.Khude, N., Stanciulescu, I., Melanz, D., et al.: Efficient parallel simulation of large flexible body systems with multiple contacts. J. Comput. Nonlinear Dyn. 8(4), 041003 (2013)Google Scholar
- 479.Clauberg, J., Leistner, M., Ulbrich, H.: Hybrid-parallel calculation of Jacobians in multi-body dynamics. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, Portland, OR (2013)Google Scholar
- 480.Zhang, J., Zhao, Y., Zhang, Y.H., et al.: Non-stationary random vibration of a coupled vehicle-slab track system using a parallel algorithm based on the pseudo excitation method. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 227(F3), 203–216 (2013)Google Scholar
- 481.Negrut, D., Tasora, A., Mazhar, H., et al.: Leveraging parallel computing in multibody dynamics. Multibody Syst. Dyn. 27(1), 95–117 (2012)zbMATHGoogle Scholar
- 482.Negrut, D., Serban, R., Mazhar, H., et al.: Parallel computing in multibody system dynamics: why, when, and how. J. Comput. Nonlinear Dyn. 9(4), 041007 (2014)Google Scholar
- 483.Sun, W., Fan, X.G.: Parallel iterative algorithm for constrained multibody systems in mechanics. In: 33rd Chinese Control Conference (CCC). Nanjing, China (2014)Google Scholar
- 484.Serban, R., Melanz, D., Li, A., et al.: A GPU-based preconditioned Newton-Krylov solver for flexible multibody dynamics. Int. J. Numer. Methods Eng. 102(9), 1585–1604 (2015)MathSciNetzbMATHGoogle Scholar
- 485.Hu, W., Tian, Q., Hu, H.Y.: Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH. Nonlinear Dyn. 84(4), 2447–2465 (2016)MathSciNetGoogle Scholar
- 486.Yang, H.G., Rui, X.T., Liu, Y.X., et al.: Study on distributed parallel computing of transfer matrix method for multibody systems. J. Vib. Eng. 27(1), 9–15 (2014)Google Scholar
- 487.Gu, J.J., Rui, X.T., Chen, G.L., et al.: Distributed parallel computing of the recursive eigenvalue search in the context of transfer matrix method for multibody systems. Adv. Mech. Eng. 8(11), 1–15 (2016)Google Scholar
- 488.Shin, S., Park, J., Park, J.: Explicit formulation of multibody dynamics based on principle of dynamical balance and its parallelization. Multibody Syst. Dyn. 37(2), 175–193 (2016)MathSciNetzbMATHGoogle Scholar
- 489.Li, P., Liu, C., Tian, Q., et al.: Dynamics of a deployable mesh reflector of satellite antenna: parallel computation and deployment simulation. J. Comput. Nonlinear Dyn. 11(6), 061005 (2016)Google Scholar
- 490.Warwas, K., Tengler, S.: Dynamic optimization of multibody system using multithread calculations and a modification of variable metric method. J. Comput. Nonlinear Dyn. 12(5), 051031 (2017)Google Scholar
- 491.Wu, Q., Spiryagin, M., Cole, C.: Parallel computing scheme for three-dimensional long train system dynamics. J. Comput. Nonlinear Dyn. 12(4), 044502 (2017)Google Scholar
- 492.Han, S.L., Bauchau, O.A.: Parallel time-integration of flexible multibody dynamics based on Newton-waveform method. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE 2017). Cleveland, OH (2017)Google Scholar
- 493.Liu, C., Ye, Z.S., Hu, H.Y.: An efficient parallel algorithm for flexible multibody systems based on domain decomposition method. Sci. Sin. Phys. Mech. Astron. 47(10): 104603-1–104603-11 (2017)Google Scholar
- 494.Ambrosio, J., Rauter, F., Pombo, J., et al.: Dynamics of high-speed train pantograph-catenary co-simulation of finite element and multibody codes. In: 2nd International Symposium on Computational Mechanics and 12th International Conference on the Enhancement and Promotion of Computational Methods in Engineering and Science. China, Hong Kong (2009)Google Scholar
- 495.Massat, J.P., Laurent, C., Bianchi, J.P., et al.: Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools. Veh. Syst. Dyn. 52(1), 338–354 (2014)Google Scholar
- 496.Arnold, M.: Stability of sequential modular time integration methods for coupled multibody system models. J. Comput. Nonlinear Dyn. 5(3), 031003 (2010)Google Scholar
- 497.Gonzalez, F., Naya, M.A., Luaces, A., et al.: On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics. Multibody Syst. Dyn. 25(4), 461–483 (2011)zbMATHGoogle Scholar
- 498.Pandey, J., Reddy, N.S., Ray, R., et al.: Multi-body dynamics of a swimming frog: A co-simulation approach. In: IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen, China (2013)Google Scholar
- 499.Fancello, M., Masarati, P., Morandini, M.: Adding non-smooth analysis capabilities to general-purpose multibody dynamics by co-simulation. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE). Portland, OR (2013)Google Scholar
- 500.Schweizer, B., Lu, D.X., Li, P.: Co-simulation method for solver coupling with algebraic constraints incorporating relaxation techniques. Multibody Syst. Dyn. 36(1), 1–36 (2016)MathSciNetzbMATHGoogle Scholar
- 501.Schneider, F., Burger, M., Arnold, M., et al.: A new approach for force-displacement co-simulation using kinematic coupling constraints. Z. Angew. Math. Mech. 97(9), 1147–1166 (2017)MathSciNetGoogle Scholar