Advertisement

Nonlinear Dynamics

, Volume 98, Issue 2, pp 1519–1553 | Cite as

Theoretical modeling and numerical solution methods for flexible multibody system dynamics

  • Bao Rong
  • Xiaoting Rui
  • Ling TaoEmail author
  • Guoping Wang
Review
  • 488 Downloads

Abstract

Flexible multibody system dynamics (MSD) is one of the hot spots and difficulties in modern mechanics. It provides a powerful theoretical tool and technical support for dynamic performance evaluation and optimization design of a large number of complex systems in many engineering fields, such as machinery, aviation, aerospace, weapon, robot and biological engineering. How to find an efficient accurate dynamics modeling method and its stable reliable numerical solving algorithm are the two core problems of flexible MSD. In this paper, the research status of modeling methods of flexible MSD in recent years is summarized first, including the selection of reference frames, the flexible body’s kinematics descriptions, the deductions of dynamics equation, the model reduction techniques and the modeling methods of the contact/collision, uncertainty and multi-field coupling problems. Then, numerical solution technologies and their latest developments of flexible MSD are discussed in detail. Finally, the future research directions of modeling and numerical computation of flexible MSD are briefly prospected.

Keywords

Multibody dynamics Contact/impact Ordinary differential equation Differential–algebraic equation Cosimulation Uncertainty Multi-field coupling Transfer matrix method Absolute nodal coordinate formulation Computer symbolic modeling Explicit–implicit hybrid integration Adaptive time integration Multi-rate method Parallel computing Clearance Lubrication Wear Nonlinear dynamics 

Notes

Acknowledgements

The research received the support of the Natural Science Foundation of China (Grant Nos: 11702292, 11605234). We are very grateful to the experts in the field of multibody dynamics for providing a large number of reference data and modification suggestions.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)Google Scholar
  2. 2.
    Lemu, H.G.: Advances in numerical computation based mechanical system design and simulation. Adv. Manuf. 3(2), 130–138 (2015)Google Scholar
  3. 3.
    Tian, Q., Cheng, L., Pei, L., et al.: Advances and challenges in dynamics of flexible multibody systems. J. Dyn. Control 15(5), 385–405 (2017)Google Scholar
  4. 4.
    Wang, Q., Zhuang, F.F., Guo, Y.Y., et al.: Advances in the research on numerical methods for non-smooth dynamics of multibody systems. Adv. Mech. 43(1), 101–111 (2013)Google Scholar
  5. 5.
    Laflin, J.J., Anderson, K.S., Khan, I.M., et al.: Advances in the application of the divide-and-conquer algorithm to multibody system dynamics. J. Comput. Nonlinear Dyn. 9(4), 041003 (2014)Google Scholar
  6. 6.
    Wittenburg, J.: Dynamics of Systems of Rigid Bodies. B. G. Teubner, Stuttgart (1977)zbMATHGoogle Scholar
  7. 7.
    Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008)zbMATHGoogle Scholar
  8. 8.
    Kane, T.R., Likins, P.W., Levinson, D.A.: Spacecraft Dynamics. McGraw-Hill Book Company, New York (1983)Google Scholar
  9. 9.
    Schiehlen, W.: Multibody Systems Handbook. Springer, Berlin (1990)zbMATHGoogle Scholar
  10. 10.
    Schiehlen, W.: Benchmark problems from vehicle dynamics. J. Mech. Sci. Technol. 29(7), 2601–2606 (2015)Google Scholar
  11. 11.
    Schiehlen, W.: Computational dynamics: theory and applications of multibody systems. Eur. J. Mech. A. Solids 25, 566–594 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Sys.Dyn. 1(2), 149–188 (1997)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer, Berlin (1988)zbMATHGoogle Scholar
  14. 14.
    Huston, R.L., Liu, C.Q.: Advances in computational methods for multibody system dynamics. CMES Comput. Model. Eng. Sci. 10(2), 143–152 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Huston, R.L.: Multibody Dynamics. Butterworth–Heinemann, Boston (1990)zbMATHGoogle Scholar
  16. 16.
    Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, New York (2013)zbMATHGoogle Scholar
  17. 17.
    Shabana, A.A.: ANCF reference node for multibody system analysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 229(1), 109–112 (2015)MathSciNetGoogle Scholar
  18. 18.
    Shabana, A.A.: ANCF tire assembly model for multibody system applications. J. Comput. Nonlinear Dyn. 10(2), 024504 (2015)Google Scholar
  19. 19.
    Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multibody Syst. Dyn. 42(3), 317–345 (2018)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Magalhaes, H., Ambrosio, J., Pombo, J.: Railway vehicle modelling for the vehicle-track interaction compatibility analysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(3), 251–267 (2016)Google Scholar
  22. 22.
    Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1(1), 3–12 (2006)Google Scholar
  23. 23.
    Eberhard, P., Hu, B.: Advanced Contact Dynamics. Southeast University Press, Nanjing (2003)Google Scholar
  24. 24.
    Fehr, J., Eberhard, P.: Simulation process of flexible multibody systems with non-modal model order reduction techniques. Multibody Syst. Dyn. 25(3), 313–334 (2011)zbMATHGoogle Scholar
  25. 25.
    Haug, E.J.: An index 0 differential-algebraic equation formulation for multibody dynamics: nonholonomic constraints. Mech. Based Des. Struct. Mach. 46(1), 38–65 (2018)Google Scholar
  26. 26.
    Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)Google Scholar
  27. 27.
    Bauchau, O.A., Han, S.: Flexible joints in structural and multibody dynamics. Mech. Sci. 4(1), 65–77 (2013)Google Scholar
  28. 28.
    Bauchau, O.A.: Parallel computation approaches for flexible multibody dynamics simulations. J. Franklin Inst. Eng. Appl. Math. 347(1), 53–68 (2010)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht (2010)zbMATHGoogle Scholar
  30. 30.
    Cuadrado, J., Dopico, D., Naya, M.A., et al.: Penalty, semi-recursive and hybrid methods for MBS real-time dynamics in the context of structural integrators. Multibody Syst. Dyn. 12(2), 117–132 (2004)zbMATHGoogle Scholar
  31. 31.
    Masarati, Pierangelo, Morandini, Marco, Mantegazza, Paolo: An efficient formulation for general-purpose multibody / multiphysics analysis. J. Comput. Nonlinear Dyn. 9(4), 041001 (2014)Google Scholar
  32. 32.
    Masarati, P.: Robust static analysis using general-purpose multibody dynamics. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 229(2), 152–165 (2015)Google Scholar
  33. 33.
    Yoo, Wan-Suk: Automation for pick arrangement design of a cutting head attachment using RecurDyn/ProcessNet. Trans. KSME A 40(7), 685–692 (2016)Google Scholar
  34. 34.
    Yoo, Wan-Suk, Kim, Kee-Nam, Kim, Hyun-Woo, et al.: Developments of multibody system dynamics: computer simulations and experiments. Multibody Syst. Dyn. 18, 35–58 (2007)zbMATHGoogle Scholar
  35. 35.
    Flores, P.: A new approach to eliminate the constraints violation at the position and velocity levels in constrained mechanical multibody systems. In: 5th European Conference on Mechanism Science (EUCOMES). Guimaraes, Portugal (2014)Google Scholar
  36. 36.
    McPhee, J., Schmitke, C., Redmond, S.: Dynamic modelling of mechatronic multibody systems with symbolic computing and linear graph theory. Math. Comput. Model. Dyn. Syst. 10(1), 1–23 (2004)zbMATHGoogle Scholar
  37. 37.
    Fisette, P., Samin, J.C.: Teaching multibody dynamics from modeling to animation. Multibody Syst. Dyn. 13(3), 339–351 (2005)zbMATHGoogle Scholar
  38. 38.
    Anderson, K.S.: Multibody computational dynamics-modeling involving scales from atoms to the motion of the planets. Int. J. Multiscale Comput. Eng. 1(2–3), 7–8 (2003)Google Scholar
  39. 39.
    Liu, Y.Z., Hong, J.Z., Yang, H.X.: Dynamics of Multi-rigid-body Systems. Higher Education Press, Beijing (1989)Google Scholar
  40. 40.
    Chen, B.: on Kane’s equation. Acta. Mech. Sin. 16(3), 311–315 (1984)zbMATHGoogle Scholar
  41. 41.
    Hong, J.Z.: Computational Multibody System Dynamics. Higher Education Press, Beijing (1999)Google Scholar
  42. 42.
    Liu, C.S., Zhang, H.J., Zhao, Z., et al.: Impact-contact dynamics in a disc-ball system. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(2152), 20120741 (2013)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Lu, Y.F.: Dynamics of Flexible Multibody System. Higher Education Press, Beijing (1996)Google Scholar
  44. 44.
    Huston, R.L., Liu, Y.W.: Multibody System Dynamics: Upper Volume. Tianjin University Press, Tianjin (1987)Google Scholar
  45. 45.
    Huston, R.L., Liu, Y.W.: Multibody System Dynamics: Lower Volume. Tianjin University Press, Tianjin (1991)Google Scholar
  46. 46.
    Huang, W.H., Shao, C.X.: Dynamics of Flexible Multibody System. Science Press, Beijing (1996)Google Scholar
  47. 47.
    Hu, H.Y., Tian, Q., Liu, C.: Computational dynamics of soft machines. Acta. Mech. Sin. 33(3), 516–528 (2017)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Hu, H.Y., Tian, Q., Zhang, W., et al.: Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Adv. Mech. 43(4), 390–414 (2013)Google Scholar
  49. 49.
    Rui, X.T., Yun, L.F., Lu, Y.Q., et al.: Transfer Matrix Method of Multibody System and its Application. Science Press, Beijing (2008)Google Scholar
  50. 50.
    Rui, X.T., Abbas, L.K., Yang, F.F., et al.: Flapwise vibration computations of coupled helicopter rotor/fuselage: application of multibody system dynamics. AIAA J. 56(2), 818–835 (2018)Google Scholar
  51. 51.
    Rui, X.T., Gu, J.J., Zhang, J.S., et al.: Visualized simulation and design method of mechanical system dynamics based on transfer matrix method for multibody systems. Adv. Mech. Eng. 9(8), 1687814017714729 (2017)Google Scholar
  52. 52.
    Liu, J.Y., Pan, K.Q.: Rigid-flexible-thermal coupling dynamic formulation for satellite and plate multibody system. Aerosp. Sci. Technol. 52, 102–114 (2016)Google Scholar
  53. 53.
    Liu, J.Y., Lu, H.: Nonlinear formulation for flexible multibody system applied with thermal load. In: ASME Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 5, PTS A-C, pp. 1173–1181 (2007)Google Scholar
  54. 54.
    Qi, Z.H.: Multibody System Dynamics. Science Press, Beijing (2008)Google Scholar
  55. 55.
    Qi, Z.H., Wang, G., Zhang, Z.G.: Contact analysis of deep groove ball bearings in multibody systems. Multibody Syst. Dyn. 33(2), 115–141 (2015)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Magnus K.: Drehbewegungen starrer Korper im zentralen Schwerefeld. In: Proceedings of the 11th International Congress of Theoretical and Applied Mechanics, Munich, Germany (1977)Google Scholar
  57. 57.
    Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008)Google Scholar
  58. 58.
    Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)Google Scholar
  59. 59.
    Masarati, P.: Adding kinematic constraints to purely differential dynamics. Comput. Mech. 47(2), 187–203 (2011)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Masarati, P.: Constraint stabilization of mechanical systems in ordinary differential equations form. Proc. IMechE Part K: J. Multi-body Dyn. 225(1), 12–31 (2011)Google Scholar
  61. 61.
    Arnold, M., Burgermeister, B., Führer, C., et al.: Numerical methods in vehicle system dynamics: state of the art and current developments. Veh. Syst. Dyn. 49(7), 1159–1207 (2011)Google Scholar
  62. 62.
    Pardo, A.C., Goulos, I., Pachidis, V.: Modelling and analysis of coupled flap-lag-torsion vibration characteristics helicopter rotor blades. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 231(10), 1804–1823 (2017)Google Scholar
  63. 63.
    Cheng, L., Wang, T.S., Li, J.F.: Attitude dynamics and control of a flexible multi-body satellite. J. Tsinghua Univ. 45(11), 1506–1509 (2005)Google Scholar
  64. 64.
    Rui, X.T., Kreuzer, E., Rong, B., et al.: Discrete time transfer matrix method for dynamics of multibody system with flexible beams moving in space. Acta. Mech. Sin. 28(2), 490–504 (2012)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Sharifnia, M., Akbarzadeh, A.: A constrained assumed modes method for dynamics of a flexible planar serial robot with prismatic joints. Multibody Syst. Dyn. 40, 261–285 (2017)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Sharifnia, M., Akbarzadeh, A.: Dynamics and vibration of a 3-PSP parallel robot with flexible moving platform. J. Vib. Control 22(4), 1095–1116 (2016)MathSciNetGoogle Scholar
  67. 67.
    Ambrósio, Jorge, Pombo, João, Antunes, Pedro, et al.: PantoCat statement of method. Veh. Syst. Dyn. 53(3), 314–328 (2015)Google Scholar
  68. 68.
    Betsch, P., Becker, C., Franke, M., et al.: A comparison of DAE integrators in the context of benchmark problems for flexible multibody dynamics. J. Mech. Sci. Technol. 29(7), 2653–2661 (2015)Google Scholar
  69. 69.
    Rong, B., Rui, X.T., Wang, G.P., et al.: Discrete time transfer matrix method for dynamic modeling of complex spacecraft with flexible appendages. J. Comput. Nonlinear Dyn. 6(1), 011013 (2011)Google Scholar
  70. 70.
    Rong, B., Rui, X.T., Wang, G.P., et al.: New efficient method for dynamics modeling and simulation of flexible multibody systems moving in plane. Multibody Syst. Dyn. 24(2), 181–200 (2010)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Sarker, M., GeoffRideout, D., Butt, S.D.: Dynamic model for 3D motions of a horizontal oilwell BHA with wellbore stick-slip whirl interaction. J. Petrol. Sci. Eng. 157, 482–506 (2017)Google Scholar
  72. 72.
    Khurelbaatar, T., Kim, K., Kim, Y.H.: A cervico-thoraco-lumbar multibody dynamic model for the estimation of joint loads and muscle forces. J. Biomech. Eng. 137(11), 111001 (2015)Google Scholar
  73. 73.
    Wu, J.Z., Dong, R.G., Warren, C.M., et al.: Analysis of the effects of surface stiffness on the contact interaction between a finger and a cylindrical handle using a three-dimensional hybrid model. Med. Eng. Phys. 36(7), 831–841 (2014)Google Scholar
  74. 74.
    Pramudita, J.A., Kikuchi, S., Tanabe, Y.: Numerical analysis of vehicle occupant responses during rear impact using a human body model. Appl. Mech. Mater. 566, 480–485 (2014)Google Scholar
  75. 75.
    Drag, Ł.: Application of dynamic optimisation to the trajectory of a cable-suspended load. Nonlinear Dyn. 84, 1637–1653 (2016)MathSciNetGoogle Scholar
  76. 76.
    Sun, H.L., Wu, H.T., Shao, B., et al.: The finite segment method for recursive approach to flexible multibody dynamics. In: 2nd International Conference on Information and Computing Science. Manchester, England (2009)Google Scholar
  77. 77.
    Wang, G.P., Rong, B., Tao, L., et al.: Riccati discrete time transfer matrix method for dynamics of underwater towed system. J. Appl. Mech. 79(4), 041004 (2012)Google Scholar
  78. 78.
    Wu, L., Sun, Y.R., Huang, B., et al.: Dynamic modeling and performance analysis of a hose-drogue aerial refueling system based on the Kane equation. In: IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China (2016)Google Scholar
  79. 79.
    Gao, Q.Y., Zhang, Q.B., Peng, W.Y., et al.: Dynamics modelling and ground test of space nets. In: 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). England, London (2016)Google Scholar
  80. 80.
    Ma, H.W., Wang, C.W.: Studying and simulation analysis for rubber track of rescue robot. Appl. Mech. Mater. 457–458, 643–648 (2014)Google Scholar
  81. 81.
    Bak, M.K., Hansen, M.R.: Analysis of offshore knuckle boom crane-part one: modeling and parameter identification. Model. Identif. Control 34(4), 157–174 (2013)Google Scholar
  82. 82.
    Lipinski, K., Kneba, Z.: Rigid finite element modeling for identification of vibrations in elastic rod driven by a DC-motor supplied from a thyristor rectifier. In: 5th International Conference on Mechatronic Systems and Materials. Vilnius, Lithuania (2009)Google Scholar
  83. 83.
    Szczotka, M.: A modification of the rigid finite element method and its application to the J-lay problem. Acta Mech. 220(1–4), 183–198 (2011)zbMATHGoogle Scholar
  84. 84.
    Xie, D., Jian, K.L., Wen, W.B.: An element-free Galerkin approach for rigid-flexible coupling dynamics in 2D state. Appl. Math. Comput. 310(1), 149–168 (2017)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Ibáñez, D.I., Orden, J.C.: García, Galerkin meshfree methods applied to the nonlinear dynamics of flexible multibody systems. Multibody Syst. Dyn. 25(2), 203–224 (2011)MathSciNetGoogle Scholar
  86. 86.
    Du, C.F., Zhang, D.G., Hong, J.Z.: A meshfree method based on radial point interpolation method for the dynamic analysis of rotating flexible beams. Chin. J. Theoret. Appl. Mech. 47(2), 279–288 (2015)Google Scholar
  87. 87.
    Fan, J.H., Zhang, D.G.: Bezier interpolation method for the dynamics of rotating flexible cantilever beam. Acta Phys. Sin. 63(15), 154501 (2014)Google Scholar
  88. 88.
    Kerdjoudj, M., Amirouche, F.M.L.: Implementation of the boundary element method in the dynamics of flexible bodies. Int. J. Numer. Meth. Eng. 39(2), 321–354 (1996)zbMATHGoogle Scholar
  89. 89.
    Escalona José, L., Sugiyama, H., Shabana, A.A.: Modelling of structural flexiblity in multibody railroad vehicle systems. Veh. Syst. Dyn. 51(7), 1027–1058 (2013)Google Scholar
  90. 90.
    Hamper, M.B., Zaazaa, K.E., Shabana, A.A.: Modeling railroad track structures using the finite segment method. Acta Mech. 223(8), 1707–1721 (2012)zbMATHGoogle Scholar
  91. 91.
    Hamper, M.B., Recuero, A.M., Escalona, J.L., et al.: Use of finite element and finite segment methods in modeling rail flexibility: a comparative study. J. Comput. Nonlinear Dynam 7(4), 041007 (2012)Google Scholar
  92. 92.
    Arbatani, S., Callejo, A., Kovecses, J., et al.: An approach to directional drilling simulation: finite element and finite segment methods with contact. Comput. Mech. 57(6), 1001–1015 (2016)MathSciNetzbMATHGoogle Scholar
  93. 93.
    Lozovskiy, A., Dubois, F.: The method of a floating frame of reference for non-smooth contact dynamics. Eur. J. Mech. A. Solids 58, 89–101 (2016)MathSciNetzbMATHGoogle Scholar
  94. 94.
    Wu, T.H., Liu, Z.Y., Hong, J.Z.: A recursive formulation based on corotational frame for flexible planar beams with large displacement. J. Central South Univ. 25(1), 208–217 (2018)Google Scholar
  95. 95.
    Le, Thanh-Nam, Battini, Jean-Marc, Hjiaj, Mohammed: Corotational formulation for nonlinear dynamics of beams with arbitrary thin-walled open cross-sections. Comput. Struct. 134(1), 112–127 (2014)Google Scholar
  96. 96.
    Le, Thanh-Nam, Battini, Jean-Marc, Hjiaj, Mohammed: A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures. Comput. Methods Appl. Mech. Eng. 269(1), 538–565 (2014)MathSciNetzbMATHGoogle Scholar
  97. 97.
    Verlinden, O., Huynh, H.N., Kouroussis, G., et al.: Modelling of flexible bodies with minimal coordinates by means of the corotational formulation. Multibody Syst. Dyn. 42(4), 495–514 (2018)MathSciNetzbMATHGoogle Scholar
  98. 98.
    Boer, S.E., Aarts, R.G.K.M., Meijaard, J.P., et al.: A nonlinear two-node superelement for use in flexible multibody systems. Multibody Syst. Dyn. 31(4), 405–431 (2014)MathSciNetzbMATHGoogle Scholar
  99. 99.
    Chebbi, J., Dubanchet, V., Gonzalez, J.A.P.: Linear dynamics of flexible multibody systems A system-based approach. Multibody Syst. Dyn. 41(1), 75–100 (2017)MathSciNetzbMATHGoogle Scholar
  100. 100.
    Olshevskiy, A., Dmitrochenko, O., Yang, H.I., et al.: Absolute nodal coordinate formulation of tetrahedral solid element. Nonlinear Dyn. 88(4), 2457–2471 (2017)zbMATHGoogle Scholar
  101. 101.
    Pappalardo, C.M., Zhang, Z.G., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91(4), 2171–2202 (2018)Google Scholar
  102. 102.
    Tian, Q., Zhang, Y.Q., Chen, L.P.: Advances in the absolute nodal coordinate method for the flexible multibody dynamics. Adv. Mech. 40(2), 189–202 (2010)Google Scholar
  103. 103.
    Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016 (2013)Google Scholar
  104. 104.
    Lee, S.H., Park, T.W., Seo, J.H., Yoon, J.W., Jun, K.J.: The development of a sliding joint for very flexible multibody dynamics using absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 223–237 (2008)zbMATHGoogle Scholar
  105. 105.
    Yu, H.D., Zhao, C.Z., Zheng, H.: A higher-order variable cross-section viscoelastic beam element via ANCF for kinematic and dynamic analyses of two-link flexible manipulators. Int. J. Appl. Mech. 09, 1750116 (2017)Google Scholar
  106. 106.
    Abbas, L.K., Rui, X.T., Marzocca, P.: Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 33(2), 163–178 (2015)MathSciNetzbMATHGoogle Scholar
  107. 107.
    Hu, W., Tian, Q., Hu, H.Y.: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75(4), 653–671 (2014)MathSciNetGoogle Scholar
  108. 108.
    Liu, Z.Y., Hong, J.Z.: Research and prospect of flexible multi-body systems dynamics. Chin. J. Comput. Mech. 25(4), 411–416 (2008)zbMATHGoogle Scholar
  109. 109.
    Liu, A.Q., Liew, K.M.: Non-linear substructure approach for dynamic analysis of rigid flexible multibody systems. Comput. Methods Appl. Mech. Eng. 114, 379–390 (1994)Google Scholar
  110. 110.
    Wu, S.C., Haug, E.J.: Geometric non-linear substructuring for dynamics of flexible mechanical systems. Int. J. Numer. Methods Eng. 26, 2211–2226 (1998)zbMATHGoogle Scholar
  111. 111.
    Das, M., Barut, A., Madenci, E.: Analysis of multibody systems experiencing large elastic deformations. Multibody Syst. Dyn. 23(1), 1–31 (2010)MathSciNetzbMATHGoogle Scholar
  112. 112.
    Garcia-Vallejo, D., Sugiyama, H., Shabana, A.A.: Finite element analysis of the geometric stiffening effect Part 1: a correction in the floating frame of reference formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 219(2), 187–202 (2005)Google Scholar
  113. 113.
    Liu, J.Y., Li, B., et al.: Rigid-flexible dynamics of elastic beam undergoing large motion. Acta. Mech. Sin. 38(2), 276–282 (2006)Google Scholar
  114. 114.
    You, C.L.: Study on modeling theory for rigid-flexible coupling dynamics of multibody systems with large deformations. University of Shanghai Jiaotong (2006)Google Scholar
  115. 115.
    Masarati, P., Morandini, M.: Intrinsic deformable joints. Multibody Syst. Dyn. 23(4), 361–386 (2010)MathSciNetzbMATHGoogle Scholar
  116. 116.
    Bauchau, O.A., Li, L.H., Masarati, P., et al.: Tensorial deformation measures for flexible joints. J. Comput. Nonlinear Dyn. 6(3), 031002 (2011)Google Scholar
  117. 117.
    Santini, P., Gasbarri, P.: General background and approach to multibody dynamics for space applications. Acta Astronaut. 64(11–12), 1224–1251 (2009)Google Scholar
  118. 118.
    Paraskevopoulos, E., Potosakis, N., Natsiavas, S.: An augmented Lagrangian formulation for the equations of motion of multibody systems subject to equality constraints. Proc. Eng. 199, 747–752 (2017)Google Scholar
  119. 119.
    Bascetta, L., Ferretti, G., Scaglioni, B.: Closed form Newton–Euler dynamic model of flexible manipulators. Robotica 35(5), 1006–1030 (2017)Google Scholar
  120. 120.
    Scaglioni, Bruno, Bascetta, Luca, Baur, Marco: Closed-form control oriented model of highly flexible manipulators. Appl. Math. Model. 52, 174–185 (2017)MathSciNetGoogle Scholar
  121. 121.
    Boyer, F., Porez, M., Morsli, F., et al.: Locomotion dynamics for bio-inspired robots with soft appendages: application to flapping flight and passive swimming. J. Nonlinear Sci. 27(4), 1121–1154 (2017)MathSciNetzbMATHGoogle Scholar
  122. 122.
    Xu, L., Li, D.Y., Mo, W.W., et al.: Random response analysis for flexible blade of a wind turbine based on nonlinear aero-elastic coupled model. J. Vib. Shock 34(10), 20–27 (2015)Google Scholar
  123. 123.
    Richard, M.J., Huang, M.Z., Bouazara, M.: Computer aided analysis and optimal design of mechanical systems using vector-network techniques. Appl. Math. Comput. 157(1), 175–200 (2004)MathSciNetzbMATHGoogle Scholar
  124. 124.
    Richard, M.J., McPhee, J.J., Anderson, R.J.: Computerized generation of motion equations using variational graph-theoretic methods. Appl. Math. Comput. 192(1), 135–156 (2007)MathSciNetzbMATHGoogle Scholar
  125. 125.
    Hao, L., Jinyang, L.: Parallel manipulator dynamics with thermal strain. Chin. J. Appl. Mech. 24(3), 391–395 (2007)Google Scholar
  126. 126.
    Hu, M., Kong, F., Chen, W.H., et al.: Multi-body dynamics of repeated fold-unfold and lock-unlock solar array. Chin. J. Space Sci. 34(4), 489–496 (2014)Google Scholar
  127. 127.
    Haug, E.J.: Simulation of spatial multibody systems with friction. Mech. Based Des. Struct. Mach. 46(3), 347–375 (2018)Google Scholar
  128. 128.
    Tang, D., Bao, S.Y., Lv, B.B., et al.: A derivative-free algorithm for nonlinear equations and its applications in multibody dynamics. J. Algorithm Comput. Technol. 12(1), 30–42 (2018)MathSciNetGoogle Scholar
  129. 129.
    Siqueira, T.M., Coda, H.B.: Total Lagrangian FEM formulation for nonlinear dynamics of sliding connections in viscoelastic plane structures and mechanisms. Finite Elem. Anal. Des. 129, 63–77 (2017)MathSciNetGoogle Scholar
  130. 130.
    Bauchau, O.A., Betsch, P., Cardona, A., et al.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst. Dyn. 37(1), 29–48 (2016)MathSciNetzbMATHGoogle Scholar
  131. 131.
    Rui, X.T., Rong, B., Wang, G.P., et al.: Discrete time transfer matrix method for dynamics analysis of complex weapon systems. Sci. China Technol. Sci. 54(5), 1061–1071 (2011)zbMATHGoogle Scholar
  132. 132.
    Rui, X.T., Bestle, D., Zhang, J.S., et al.: A new version of transfer matrix method for multibody systems. Multibody Syst. Dyn. 38(2), 137–156 (2016)MathSciNetzbMATHGoogle Scholar
  133. 133.
    Rong, B.: Study on transfer matrix method for dynamics of controlled multibody systems, Ph.D. Dissertation, Nanjing: Nanjing University of Science and Technology (2011)Google Scholar
  134. 134.
    Rong, B., Rui, X.T., Tao, L.: Discrete time transfer matrix method for launch dynamics modeling and cosimulation of self-propelled artillery system. J. Appl. Mech. 80(1), 011008 (2013)Google Scholar
  135. 135.
    Rong, B.: Efficient dynamics analysis of large-deformation flexible beams by using the absolute nodal coordinate transfer matrix method. Multibody Syst. Dyn. 32(4), 535–549 (2014)MathSciNetzbMATHGoogle Scholar
  136. 136.
    Rong, B., Lu, K., Rui, X.T., et al.: Nonlinear dynamics analysis of pipe conveying fluid by Riccati absolute nodal coordinate transfer matrix method. Nonlinear Dyn. 92(2), 699–708 (2018)Google Scholar
  137. 137.
    Rong, B., Rui, X.T., Lu, K., et al.: Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system. Mech. Syst. Signal Process. 104(1), 589–606 (2018)Google Scholar
  138. 138.
    Rong, B., Rui, X.T., Tao, L.: Dynamics and genetic fuzzy neural network vibration control design of a smart flexible four-bar linkage mechanism. Multibody Syst. Dyn. 28(4), 291–311 (2012)MathSciNetGoogle Scholar
  139. 139.
    Rong, B., Rui, X.T., Yang, F.F., et al.: Discrete time transfer matrix method for dynamics of multibody system with real-time control. J. Sound Vib. 329(6), 627–643 (2010)Google Scholar
  140. 140.
    Rong, B., Rui, X.T., Wang, G.P., et al.: Dynamic modeling and H\(\infty \) independent modal space vibration control of laminate plates. Sci.China Phys. Mech. Astron. 54(9), 1638–1650 (2011)Google Scholar
  141. 141.
    Schilder, J., Ellenbroek, M., de Boer, A.: Recursive thoughts on the simulation of the flexible multibody dynamics of slender offshore structures. In: IOP Conference Series: Materials Science and Engineering, Vol. 276, pp. 012029 (2017)Google Scholar
  142. 142.
    Schilder, J., Ellenbroek, M., de Boer, A.: Recursive solution procedures for flexible multibody systems: comparing condensation and transfer matrix methods. 2017. Paper presented at 8th ECCOMAS Thematic Conference on Multibody Dynamics 2017, Prague, Czech RepublicGoogle Scholar
  143. 143.
    Krauss, R.: Infinite-Dimensional Pole-optimization control design for flexible structures using the transfer matrix method. J. Comput. Nonlinear Dyn. 9(1), 011004 (2013)Google Scholar
  144. 144.
    Krauss, R., Okasha, M.: Discrete-time transfer matrix modeling of flexible robots under feedback control. In: American Control Conference (ACC), Washington DC (2013)Google Scholar
  145. 145.
    Abbas, L.K., Zhou, Q.B., Rui, X.T.: Frequency determination of beams coupled by a double spring-mass system using transfer matrix method of linear multibody systems. In: 5th International Symposium on Knowledge Acquisition and Modeling (KAM). England, London (2015)Google Scholar
  146. 146.
    Hendy, H., Rui, X., Zhou, Q., et al.: Transfer matrix method for multibody systems of TITO system control applications. Appl. Mech. Mater. 530–531, 1043–1048 (2014)Google Scholar
  147. 147.
    He, B., Rui, X.T., Zhang, H.L.: Transfer matrix method for natural vibration analysis of tree system. Math. Probl. Eng. 393204 (2012)Google Scholar
  148. 148.
    Shen, Z.Y., Yuan, Y., Yuan, H.T., et al.: Multibody dynamics method for immersed tunnel subjected to longitudinal seismic loading. In: 11th World Congress on Computational Mechanics (WCCM)/5th European Conference on Computational Mechanics (ECCM)/6th European Conference on Computational Fluid Dynamics (ECFD), Barcelona, Spain (2014)Google Scholar
  149. 149.
    Srensen, R., Iversen, M.R., Zhang, X.: Dynamic modeling of flexible robot manipulators: acceleration-based discrete time transfer matrix method. In: Bai S., Ceccarelli M. (eds) Recent Advances in Mechanism Design for Robotics. Mechanisms and Machine Science, vol 33. Springer, Cham (2015)Google Scholar
  150. 150.
    Šalinić, S., Bošković, G., Nikolić, M.: Dynamic modelling of hydraulic excavator motion using Kane’s equations. Autom. Constr. 44, 56–62 (2014)Google Scholar
  151. 151.
    Orsino, R.M.M., Coelho, T.A.H., Pesce, C.P.: Analytical mechanics approaches in the dynamic modelling of Delta mechanism. Robotica 33(4), 953–973 (2015)Google Scholar
  152. 152.
    Zhong, Y.W., Wang, L.M.: A method to establish the dynamic models of multibody system based on Kane’s equations. In: 2nd International Conference on Modelling, Identification and Control (MIC). France, Paris (2015)Google Scholar
  153. 153.
    Pishkenari, H.N., Yousefsani, S.A., Gaskarimahalle, A.L., et al.: A fresh insight into Kane’s equations of motion. Robtica 35(3), 498–510 (2017)Google Scholar
  154. 154.
    Klausen, K., Fossen, T.I., Johansen, T.A.: Nonlinear control with swing damping of a multirotor UAV with suspended load. J. Intell. Robot. Syst. 88(2–4), 379–394 (2017)Google Scholar
  155. 155.
    Zhao, J., Zhao, R., Xue, Z.: A new modeling method for flexible multibody systems. Multibody Syst. Dyn. 35, 179–190 (2015)MathSciNetzbMATHGoogle Scholar
  156. 156.
    Pestel, E.C., Leckie, F.A.: Matrix Method in Elastomechanics. McGraw-Hill Book Company, New York (1963)Google Scholar
  157. 157.
    Horner, G.C., Pilkey, W.D.: The riccati transfer matrix method. ASME J. Mech. Des. 1(2), 297–302 (1978)Google Scholar
  158. 158.
    Kumar, A.S., Sankar, T.S.: A new transfer matrix method for response analysis of large dynamic systems. Comput. Struct. 23(4), 545–552 (1986)zbMATHGoogle Scholar
  159. 159.
    Loewy, R.G., Bhntani, N.: Combined finite element-transfer matrix method. J. Sound Vib. 226(5), 1048–1052 (1999)Google Scholar
  160. 160.
    Wang, L., Hofmann, V., Bai, F.S., et al.: Modeling of coupled longitudinal and bending vibrations in a sandwich type piezoelectric transducer utilizing the transfer matrix method. Mech. Syst. Signal Process. 108, 216–237 (2018)Google Scholar
  161. 161.
    Kim, J.S., Park, N., Lee, H.: Vibration analysis of a planetary gear system based on the transfer matrix method. J. Mech. Sci. Technol. 30(2), 611–621 (2016)Google Scholar
  162. 162.
    Bozdogan, K.B., Ozturk, D.: Vibration Analysis of Asymmetric-Plan Frame Buildings Using Transfer Matrix Method. Math. Comput. Appl. 15(2), 279–288 (2010)zbMATHGoogle Scholar
  163. 163.
    Wickenheiser, A.M., Reissman, T.: Generalized eigensolution to piecewise continuous distributed-parameter models of piezoelectric energy harvesters using the transfer matrix method. In: 4th Annual Meeting of the ASME/AIAA Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS). Scottsdale, AZ (2011)Google Scholar
  164. 164.
    Boiangiu, M., Boiangiu, G.: Improved transfer matrix method for the study of vibrations of the centrifuges with the basket in console. Mater. Res. Appl. 875–877: 2067 (2014)Google Scholar
  165. 165.
    Zhang, J.S.: Study on some issues of the new version of transfer matrix method for multibody systems, Ph.D. Dissertation, Nanjing: Nanjing University of Science and Technology (2017)Google Scholar
  166. 166.
    Guida, D., Pappalardo, C.M.: Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49(7), 1547–1559 (2014)MathSciNetzbMATHGoogle Scholar
  167. 167.
    Shi, Y.D., Wang, D.S.: Dynamics analysis of multibody system using Gauss constraint. Mech. Eng. 32(6), 22–26 (2010)Google Scholar
  168. 168.
    Liu, Y.Z.: Dynamic modeling of multi-body system based on Gauss’s principle. Chin. J. Theoret. Appl. Mech. 46(6), 940–945 (2014)Google Scholar
  169. 169.
    Hao, M.W., Ye, Z.Y.: Gauss principle of least constraint of simple flexible body and multi-flexible body dynamics. J Guangxi Univ. Nat. Sci. Ed. 36(2), 195–204 (2011)Google Scholar
  170. 170.
    Khalil, W., Boyer, F., Morsli, F.: General dynamic algorithm for floating base tree structure robots with flexible joints and links. J. Mech. Robot. 9(3), 031003 (2017)Google Scholar
  171. 171.
    Muller, A.: Screw and Lie group theory in multibody dynamics recursive algorithms and equations of motion of tree-topology systems. Multibody Syst. Dyn. 42(2), 219–248 (2018)MathSciNetGoogle Scholar
  172. 172.
    Tong, M.M.: A recursive algorithm for solving the generalized velocities from the momenta of flexible multibody systems. J. Comput. Nonlinear Dyn. 5(4), 041002 (2010)Google Scholar
  173. 173.
    Boyer, F., Ali, S.: Recursive inverse dynamics of mobile multibody systems with joints and wheels. IEEE Trans. Rob. 27(2), 215–228 (2011)Google Scholar
  174. 174.
    Gattringer, H., Oberhuber, B., Mayr, J., et al.: Recursive methods in control of flexible joint manipulators. Multibody Syst. Dyn. 32(1), 117–131 (2014)MathSciNetzbMATHGoogle Scholar
  175. 175.
    Chadaj, K., Malczyk, P., Fraczek, J.: A parallel recursive Hamiltonian algorithm for forward dynamics of serial kinematic chains. IEEE Trans. Rob. 33(3), 647–660 (2017)zbMATHGoogle Scholar
  176. 176.
    Sun, H.L., Wu, H.T., Zhou, Y.J.: A transfer matrix method based on spatial operator algebra theory. Mech. Sci. Technol. 29(9), 1126–1131 (2010)Google Scholar
  177. 177.
    Tian, F.Y., Wu, H.T., Zhao, D.X.: Hybrid dynamics of flexible multibody system and real time simulation. China Mech. Eng. 21(1), 6–12 (2010)Google Scholar
  178. 178.
    Hu, J.C., Wang, T.S.: A recursive absolute nodal coordinate formulation with O(n) algorithm complexity. Chin. J. Theoret. Appl. Mech. 48(5), 1172–1183 (2016)MathSciNetGoogle Scholar
  179. 179.
    Liu, F., Zhang, J.R., Hu, Q.: A modified constraint force algorithm for flexible multibody dynamics with loop constraints. Nonlinear Dyn. 90(3), 1885–1906 (2017)MathSciNetzbMATHGoogle Scholar
  180. 180.
    Qi, Z.H., Xu, Y.S., Luo, X.M.: Recursive formulations for multibody systems with frictional joints based on the interaction between bodies. Multibody Syst. Dyn. 24(2), 133–166 (2010)MathSciNetzbMATHGoogle Scholar
  181. 181.
    Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to moving base. J. Guid. 10(2), 139–151 (1987)Google Scholar
  182. 182.
    Zhang, W.: Numerical analysis of dynamic stiffening in flexible multibody systems, Master Dissertation. Dalian University of Technology, Dalian (2002)Google Scholar
  183. 183.
    Qi, ZhH, Chen, L., Zhang, W.: Belated initial stress method for dynamic stiffening in multibody systems. J. Dalian Univ. Technol. 42(1), 32–35 (2002)zbMATHGoogle Scholar
  184. 184.
    Sanborn, G., Choi, J., Shik, Yoon J., et al.: Systematic integration of finite element methods into multibody dynamics considering hyperelasticity and plasticity. J. Comput. Nonlinear Dyn. 9(4), 041012 (2014)Google Scholar
  185. 185.
    Ambrósio, J.A.C.: Dynamics of structures undergoing gross motion and nonlinear deformations: A multibody approach. Comput. Struct. 59(6), 1001–1012 (1996)zbMATHGoogle Scholar
  186. 186.
    Sugiyama, H., Shabana, A.A.: Analysis of plastic deformations in multibody system dynamics. In: 7th International Conference on Computational Structures Technology/4th International Conference on Engineering Computational Technology. Portugal, Lisbon (2004)Google Scholar
  187. 187.
    Orzechowski, Grzegorz, Frączek, Janusz: Volumetric locking suppression method for nearly incompressible nonlinear elastic multi-layer beams using ANCF elements. J. Theoret. Appl. Mech. 55(3), 977–990 (2017)Google Scholar
  188. 188.
    Pan, W., Haug, E.J.: Dynamic simulation of general flexible multibody systems. Mech. Struct. Mach. 27(2), 217–251 (1999)Google Scholar
  189. 189.
    Maqueda, L.G., Shabana, A.A.: Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams. Multibody Syst. Dyn. 18(3), 375–396 (2007)zbMATHGoogle Scholar
  190. 190.
    Maqueda, L.G., Mohamed, A.N.A., Shabana, A.A.: Use of general nonlinear material models in beam problems: application to belts and rubber chains. J. Comput. Nonlinear Dyn. 5(2), 021003 (2010)Google Scholar
  191. 191.
    Mohamed, A.N.A., Shabana, A.A.: A nonlinear visco-elastic constitutive model for large rotation finite element formulations. Multibody Syst. Dyn. 26(1), 57–79 (2011)MathSciNetzbMATHGoogle Scholar
  192. 192.
    Zhao, C.Z., Yu, H.D., Lin, Z.Q., et al.: Dynamic model and behavior of viscoelastic beam based on the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 229(1), 84–96 (2015)Google Scholar
  193. 193.
    Shi, W.: Dynamic investigation on elasto-plastic multi-body system, Master Dissertation. Shanghai Jiao Tong University, Shanghai (2010)Google Scholar
  194. 194.
    Cao, D., Zhao, Z., Ren, G., et al: Dynamic modeling of a viscoelastic body in a multibody system. J. Tsinghua Univ. 52(4): 486-488, 493 (2012)Google Scholar
  195. 195.
    Orzechowski, G., Fraczek, J.: Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF. Nonlinear Dyn. 82(1–2), 451–464 (2015)MathSciNetGoogle Scholar
  196. 196.
    Gebhardt, C.G., Hofmeister, B., Hente, C., et al.: Nonlinear dynamics of slender structures: a new object-oriented framework. Comput. Mech. 63(2), 219–252 (2019)MathSciNetzbMATHGoogle Scholar
  197. 197.
    Tran, D.M.: Component mode synthesis methods using interface modes. Appl. Struct. Cyclic Symmet. Comput. Struct. 79, 209–222 (2001)Google Scholar
  198. 198.
    Mikheev, G., Pogorelov, D., Dmitrochenko, O., et al: Flexible multibody approaches for dynamical simulation of beam structures in drilling. In: ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC) (2014)Google Scholar
  199. 199.
    Gerstmayr, J., Ambrosio, J.: Component mode synthesis with constant mass and stiffness. Int. J. Numer. Meth. Eng. 73, 1518–1546 (2008)zbMATHGoogle Scholar
  200. 200.
    O’Shea, J.J., Jayakumar, P., Mechergui, D., et al.: Reference conditions and substructuring techniques in flexible multibody system dynamics. J. Comput. Nonlinear Dyn. 13(4), 041007 (2018)Google Scholar
  201. 201.
    Kobayashi, N., Wago, T., Sugawara, Y.: Reduction of system matrices of planar beam in ANCF by component mode synthesis method. Multibody Syst. Dyn. 26, 265–281 (2011)zbMATHGoogle Scholar
  202. 202.
    Sun, D.Y., Chen, G.P., Shi, Y., et al.: Model reduction of a flexible multibody system with clearance. Mech. Mach. Theory 85, 106–115 (2015)Google Scholar
  203. 203.
    Lozovskiy, A.: The modal reduction method for multi-body dynamics with non-smooth contact. Int. J. Numer. Meth. Eng. 98, 937–959 (2014)MathSciNetzbMATHGoogle Scholar
  204. 204.
    Ricci, S., Troncossi, M., Rivola, A.: Model reduction of the flexible rotating crankshaft of a motorcycle engine cranktrain. Int. J. Rotat. Mach. 143523 (9 pp.) (2011)Google Scholar
  205. 205.
    Kim, J.G., Han, J.B., Lee, H., et al.: Flexible multibody dynamics using coordinate reduction improved by dynamic correction. Multibody Syst. Dyn. 42(4), 411–429 (2018)MathSciNetzbMATHGoogle Scholar
  206. 206.
    Sun, D.Y., Chen, G.P., Sun, R.J.: Model reduction of a multibody system including a very flexible beam element. J. Mech. Sci. Technol. 28(8), 2963–2969 (2014)Google Scholar
  207. 207.
    Fischer, M., Eberhard, P.: Linear model reduction of large scale industrial models in elastic multibody dynamics. Multibody Syst. Dyn. 31(1), 27–46 (2014)MathSciNetGoogle Scholar
  208. 208.
    Shiiba, T., Fehr, J., Eberhard, P.: Flexible multibody simulation of automotive systems with non-modal model reduction techniques. Veh. Syst. Dyn. 50(12), 1905–1922 (2012)Google Scholar
  209. 209.
    Fehr, J., Fischer, M., Haasdonk, B., et al.: Greedy-based approximation of frequency-weighted Gramian matrices for model reduction in multibody dynamics. Z. Angew. Math. Mech. 93(8), 501–519 (2013)MathSciNetzbMATHGoogle Scholar
  210. 210.
    Fehr, J., Eberhard, P.: Error-controlled model reduction in flexible multibody dynamics. J. Comput. Nonlinear Dyn. 5(3), 031005 (2010)Google Scholar
  211. 211.
    Liang, J.X., Ma, O., Liu, C.S.: Model reduction of contact dynamics simulation using a modified Lyapunov balancing method. Front. Mech. Eng. 6(4), 383–391 (2011)Google Scholar
  212. 212.
    Xiao, Z.H., Jiang, Y.L.: Dimension reduction for second-order systems by general orthogonal polynomials. Math. Comput. Model. Dyn. Syst. 20(4), 414–432 (2014)MathSciNetzbMATHGoogle Scholar
  213. 213.
    Masoudi, R., Uchida, T., McPhee, J.: Reduction of multibody dynamic models in automotive systems using the proper orthogonal decomposition. J. Comput. Nonlinear Dyn. 10(3), 031007 (2015)Google Scholar
  214. 214.
    Kim, E., Kim, H., Cho, M.: Model order reduction of multibody system dynamics based on stiffness evaluation in the absolute nodal coordinate formulation. Nonlinear Dyn. 87(3), 1901–1915 (2017)Google Scholar
  215. 215.
    Wu, L., Tiso, P.: Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach. Multibody Syst. Dyn. 36(4), 405–425 (2016)MathSciNetzbMATHGoogle Scholar
  216. 216.
    Holm-Jørgensen, K., Nielsen, S.R.K.: A component mode synthesis algorithm for multibody dynamics of wind turbines. J. Sound Vib. 326, 753–767 (2009)Google Scholar
  217. 217.
    Abbas, L.K., Rui, X.T., Marzocca, P.: Panel flutter analysis of plate element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 27, 135–152 (2011)MathSciNetzbMATHGoogle Scholar
  218. 218.
    Aarts, R.G.K.M., JonkerJ.B.: Dynamic simulation of planar flexible link manipulators using adaptive modal integration. Multibody Syst. Dyn. 7(1): 31–50 (2002)Google Scholar
  219. 219.
    Wang, F.X.: Model reduction with geometric stiffening nonlinearities for dynamic simulations of multibody systems. Int. J. Struct. Stab. Dyn. 13, 1350046 (2013)MathSciNetzbMATHGoogle Scholar
  220. 220.
    Ihrle, S., Lauxmann, M., Eiber, A., et al.: Nonlinear modelling of the middle ear as an elastic multibody system-applying model order reduction to acousto-structural coupled systems. J. Comput. Appl. Math. 246, 18–26 (2012)MathSciNetzbMATHGoogle Scholar
  221. 221.
    Luo, K., Hu, H.Y., Liu, C., et al.: Model order reduction for dynamic simulation of a flexible multibody system via absolute nodal coordinate formulation. Comput. Methods Appl. Mech. Eng. 324(1), 573–594 (2017)MathSciNetGoogle Scholar
  222. 222.
    Heirman Gert, H.K., Naets, F., Desmet, W.: A system-level model reduction technique for the efficient simulation of flexible multibody systems. Int. J. Numer. Meth. Eng. 85, 330–354 (2011)MathSciNetzbMATHGoogle Scholar
  223. 223.
    Heirman Gert, H.K., Naets, F., Desmet, W.: Forward dynamical analysis of flexible multibody systems using system-level model reduction. Multibody Syst. Dyn. 25(1), 97–113 (2011)MathSciNetzbMATHGoogle Scholar
  224. 224.
    Heirman G.H.K., Desmet W.: System-level modal representation of flexible multibody systems. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, San Diego, CA (2009)Google Scholar
  225. 225.
    Palomba, I., Richiedei, D., Trevisani, A.: A model reduction strategy for flexible-link multibody systems. In: Boschetti, G., Gasparetto, A. (eds) Advances in Italian Mechanism Science. Mechanisms and Machine Science, Vol. 47. Springer, Cham (2017)Google Scholar
  226. 226.
    Stadlmayr, D., Witteveen, W., Steiner, W.: A generalized constraint reduction method for reduced order MBS models. Multibody Syst. Dyn. 41(3), 259–274 (2017)MathSciNetzbMATHGoogle Scholar
  227. 227.
    Liu, Z.Y., Hong, J.Z., Wang, J.Y.: Study on model reduction of flexible multibody system with contact collision. In; The 9th National Academic Conference of System Dynamics and the 4th National Academic Conference on Aerospace Dynamics and Control. Wuhan, China (2015)Google Scholar
  228. 228.
    Held, A., Nowakowski, C., Moghadasi, A., et al.: On the influence of model reduction techniques in topology optimization of flexible multibody systems using the floating frame of reference approach. Struct. Multidiscip. Optim. 53(1), 67–80 (2016)MathSciNetGoogle Scholar
  229. 229.
    Orden, J.C.G.: Analysis of joint clearances in multibody systems. Multibody Syst. Dyn. 13(4), 401–420 (2005)MathSciNetzbMATHGoogle Scholar
  230. 230.
    Fox, B., Jennings, L.S., Zomaya, A.Y.: Numerical computation of differential-algebraic equations for nonlinear dynamics of multibody android systems in automobile crash simulation. IEEE Trans. Biomed. Eng. 46(10), 1199–1206 (1999)Google Scholar
  231. 231.
    Wang, W.B., Kang, K., Zhao, H.L.: Joint simulation of crashworthy train set based on finite element and multi-body dynamics. J. Tongji Univ. Nat. Sci. 39(10), 1552–1556 (2011)Google Scholar
  232. 232.
    Masoudi, R., Mcphee, J.: A novel micromechanical model of nonlinear compression hysteresis in compliant interfaces of multibody systems. Multibody Syst. Dyn. 37(3), 325–343 (2016)MathSciNetGoogle Scholar
  233. 233.
    Hassan, M.T.Z., Shi, M.G., Meguid, S.A.: Nonlinear multibody dynamics and finite element modeling of occupant response: part I–rear vehicle collision. Int. J. Mech. Mater. Des. pp. 1–19 (2019)Google Scholar
  234. 234.
    Dong, F.X., Hong, J.Z.: Review of impact problem for dynamics of multibody system. Adv. Mech. 39(3), 352–359 (2009)Google Scholar
  235. 235.
    Han, S.L., Hong, J.Z.: Several key issues in flexible multibody dynamics with contact/impact. Mech. Eng. 33(2), 1–7 (2011)Google Scholar
  236. 236.
    Khulief, Y.A.: Modeling of impact in multibody systems: an overview. J. Comput. Nonlinear Dyn. 8(2), 021012 (2012)Google Scholar
  237. 237.
    Yan, ShZ, Xiang, W.K., Huang, T.Q.: Advances in modeling of clearance joints and dynamics of mechanical systems with clearances. Acta Scientiarum Naturalium Universitatis Pekinensis 52(4), 741–755 (2016)MathSciNetGoogle Scholar
  238. 238.
    Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)Google Scholar
  239. 239.
    Damic, V., Cohodar, M., Damic, D.: Discontinuities in physical modeling: bond graph models of impact in multibody systems. In; 10th International Conference on Bond Graph Modeling and Simulation (ICBGM) as Part of SummerSim MultiConference. Genoa, Italy (2012)Google Scholar
  240. 240.
    Bai, Z.F., Zhao, Y., Tian, H.: Study on contact dynamics for flexible multi-body system. J. Vib. Shock 28(6), 75–78 (2009)Google Scholar
  241. 241.
    Li, Q., Wang, T.S., Ma, X.R.: Geometric nonlinear effects on the planar dynamics of a pivoted flexible beam encountering a point-surface impact. Multibody Syst. Dyn. 21(3), 249–260 (2009)zbMATHGoogle Scholar
  242. 242.
    Yu, L., Zhao, Z.H., Ren, Q.H., et al.: Contact simulations of flexible bodies based on absolute nodal coordinates. J. Tsinghua Univ. Sci. Technol. 50(7), 1135–1140 (2010)Google Scholar
  243. 243.
    Choi, J., Rhim, S., Choi, J.H.: A general purpose contact algorithm using a compliance contact force model for rigid and flexible bodies of complex geometry. Int. J. Non-Linear Mech. 53(SI): 13–23 (2013)Google Scholar
  244. 244.
    Wang, Q.T., Tian, Q., Hu, H.Y.: Dynamic simulation of frictional multi-zone contacts of thin beams. Nonlinear Dyn. 83(4), 1919–1937 (2016)Google Scholar
  245. 245.
    Dong, F.X., Hong, J.Z., Zhu, K., et al.: Numerical and experimental studies on impact dynamics of a planar flexible multibody system. Acta. Mech. Sin. 26(4), 635–642 (2010)MathSciNetzbMATHGoogle Scholar
  246. 246.
    Wang, D.T., Hong, J.Z., Wu, T.H.: Additional contact constraint method in impact stage of planar flexible multi-body dynamics. Chin. J. Theoret. Appl. Mech. 43(6), 1157–1161 (2011)Google Scholar
  247. 247.
    Qian, Z.J., Zhang, D.G., Jin, C.Q.: Dynamic simulation for flexible multibody systems containing frictional impact and stick- slip processes. J. Vib. Shock 36(23), 32–37 (2017)Google Scholar
  248. 248.
    Dong, F.X., Hong, J.Z.: Study on the modeling theory of the normal impact dynamics for the planar flexible multibody system. Chin. J. Comput. Mech. 27(6), 1042–1048 (2010)Google Scholar
  249. 249.
    Duan, Y.C., Zhang, D.G., Hong, J.Z.: Partition method for impact dynamics of flexible multibody systems based on contact constraint. Appl. Math. Mech. 34(11), 1393–1404 (2013)MathSciNetGoogle Scholar
  250. 250.
    Chen, P., Liu, J.Y., Lu, G.C.: A new subregion mesh method for the investigation of the elastic-plastic impact in flexible multibody systems. Acta. Mech. Sin. 33(1), 189–199 (2017)MathSciNetzbMATHGoogle Scholar
  251. 251.
    Yao, T.Q., Chi, Y.L., Huang, Y.Y., et al.: Research on multibody dynamics and contact vibration of belt transmission. J. Syst. Simul. 21(16), 4945–4950 (2009)Google Scholar
  252. 252.
    Bhalerao, K.D., Anderson, K.S.: Modeling intermittent contact for flexible multibody systems. Nonlinear Dyn. 60(1–2), 63–79 (2010)zbMATHGoogle Scholar
  253. 253.
    Gao, H., Gan, F., Dai, H.Y.: A dynamic gluing algorithm for rigid-flexible contact problems. J. Vib. Shock 31(23), 123–127 (2012)Google Scholar
  254. 254.
    Duan, Y.C., Zhang, D.G.: Flexible multibody system impact dynamics based on elastic-plastic contact. J. Nanjing Univ. Sci. Technol. 36(2), 189–194 (2012)Google Scholar
  255. 255.
    Tamarozzi, T., Ziegler, P., Eberhard, P., et al.: On the applicability of static modes switching in gear contact applications. Multibody Syst. Dyn. 30(2), 209–219 (2013)Google Scholar
  256. 256.
    Duan, Y.C., Zhang, D.G., Hong, J.Z.: Global Impact Dynamic modeling and verification of a flexible beam with large overall motion. Adv. Mech. Eng. 362317 (2013)Google Scholar
  257. 257.
    Yu, H.N., Zhao, J.S., Chu, F.L.: An enhanced multi-point dynamics methodology for collision and contact problem. Proc. Inst.Mech. Eng. C J. Mech. Eng. Sci. 227(6), 1203–1223 (2013)Google Scholar
  258. 258.
    Pichler, F., Witteveen, W., Fischer, P.: A complete strategy for efficient and accurate multibody dynamics of flexible structures with large lap joints considering contact and friction. Multibody Syst. Dyn. 40(4), 407–436 (2017)MathSciNetzbMATHGoogle Scholar
  259. 259.
    Calì, M., Oliveri, S.M., Sequenzia, G., Fatuzzo, G.: An effective model for the sliding contact forces in a multibody environment. In: Eynard, B., Nigrelli, V., Oliveri, S., Peris-Fajarnes, G., Rizzuti, S. (eds.) Adv. Mech. Des. Eng. Manuf. Lecture Notes in Mechanical Engineering, Springer, Cham (2017)Google Scholar
  260. 260.
    Ambrosio, J.A.C., Goncalves, J.P.C.: Vehicle crashworthiness design and analysis by means of nonlinear flexible multibody dynamics. Int. J. Veh. Des. 26(4), 309–330 (2001)Google Scholar
  261. 261.
    Ryu, H.S., Huh, K.S., Bae, D.S., et al.: Development of a multibody dynamics simulation tool for tracked vehicles—(Part I, efficient contact and nonlinear dynamic modeling). JSME Int J., Ser. C 46(2), 540–549 (2003)Google Scholar
  262. 262.
    Askari, E., Flores, P., Dabirrahmani, D., et al.: Nonlinear vibration and dynamics of ceramic on ceramic artificial hip joints: a spatial multibody modeling. Nonlinear Dyn. 76(2), 1365–1377 (2014)Google Scholar
  263. 263.
    You, B.D., Wen, J.M., Zhang, G.Y., et al: Nonlinear dynamic modeling for a flexible laminated composite appendage attached to a spacecraft body undergoing deployment and locking motions. J. Aerosp. Eng. 29(5) (2016)Google Scholar
  264. 264.
    Shi, J.B., Liu, Z.Y., Hong, J.Z.: Dynamic contact model of shell for multibody system applications. Multibody Syst. Dyn. 44(4), 335–366 (2018)MathSciNetzbMATHGoogle Scholar
  265. 265.
    Schiehlen, W., Seifried, R., Eberhard, P.: Elastoplastic phenomena in multibody impact dynamics. Comput. Methods Appl. Mech. Eng. 195(50–51), 6874–6890 (2006)MathSciNetzbMATHGoogle Scholar
  266. 266.
    Dupac, M., Beale, D.G.: Dynamic analysis of a flexible linkage mechanism with cracks and clearance. Mech. Mach. Theory 45(12), 1909–1923 (2010)zbMATHGoogle Scholar
  267. 267.
    Rahmanian, S., Ghazavi, M.R.: Bifurcation in planar slider-crank mechanism with revolute clearance joint. Mech. Mach. Theory 91, 86–101 (2015)Google Scholar
  268. 268.
    Pereira, C., Flores, P., Ramalho, A., et al.: The influence of contact model, friction and lubrication on the dynamics of cylindrical clearance joints. In: 10th International Conference on Computational Structures Technology. Valencia, Spain (2010)Google Scholar
  269. 269.
    Li, P., Chen, W., Li, D.S., et al.: A novel transition model for lubricated revolute joints in planar multibody systems. Multibody Syst. Dyn. 36(3), 279–294 (2016)MathSciNetzbMATHGoogle Scholar
  270. 270.
    Lorenz, N., Offner, G., Knaus, O.: Thermal analysis of hydrodynamic lubricated journal bearings in internal combustion engines, Proceedings of the Institution of Mechanical Engineers, Part K-Journal of Multi-body. Dynamics 231(3), 406–419 (2017)Google Scholar
  271. 271.
    Meuter, M., Offner, G., Haase, G.: Multi-body engine simulation including elastohydrodynamic lubrication for non-conformal conjunctions. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 231(3), 457–468 (2017)Google Scholar
  272. 272.
    Ravn, P., Shivaswamy, S., Alshaer, B.J., et al.: Joint clearances with lubricated long bearings in multibody mechanical systems. J. Mech. Des. 122(4), 484–488 (2000)Google Scholar
  273. 273.
    Flores, P., Ambrosio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004)zbMATHGoogle Scholar
  274. 274.
    Fang, C.C., Meng, X.H., Lu, Z.J., et al.: Modeling a lubricated full-floating pin bearing in planar multibody systems. Tribol. Int. 131, 222–237 (2019)Google Scholar
  275. 275.
    Chen, K., Zhang, G.J., Wu, R., et al.: Dynamic analysis of a planar hydraulic rock-breaker mechanism with multiple clearance joints. Shock Vib. 4718456 (2019)Google Scholar
  276. 276.
    Zhao, B., Zhou, K., Xie, Y.B.: A new numerical method for planar multibody system with mixed lubricated revolute joint. Int. J. Mech. Sci. 113, 105–119 (2016)Google Scholar
  277. 277.
    Hou, J.H., Yao, G.F., Huang, H.L.: Dynamic analysis of a spatial mechanism including frictionless spherical clearance joint with flexible socket. J. Comput. Nonlinear Dyn. 13(3), 031002 (2018)Google Scholar
  278. 278.
    Su, Y.W., Huo, W.N., Chen, W., et al.: Dynamic analysis of multibody system with lubricated revolute joints. Lubr. Eng. 42(3), 18–22 (2017)Google Scholar
  279. 279.
    Erkaya, S.: Clearance-induced vibration responses of mechanical systems: computational and experimental investigations. J. Braz. Soc. Mech. Sci. Eng. 40(2): UNSP 90 (2018)Google Scholar
  280. 280.
    Tian, Q., Liu, C., Machado, M., et al.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)zbMATHGoogle Scholar
  281. 281.
    Tian, Q., Zhang, Y., Chen, L., et al.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010)zbMATHGoogle Scholar
  282. 282.
    Tian, Q., Xiao, Q., Sun, Y., et al.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2015)MathSciNetGoogle Scholar
  283. 283.
    Tian, Q., Lou, J., Mikkola, A.: A new elastohydrodynamic lubricated spherical joint model for rigid-flexible multibody dynamics. Mech. Mach. Theory 107, 210–228 (2017)Google Scholar
  284. 284.
    Jin, C.M., Qiu, Y., Fan, L., et al.: The non-linear dynamic behavior of an elastic linkage mechanism with clearances. J. Sound Vib. 249(2), 213–226 (2002)Google Scholar
  285. 285.
    Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Mech. Mach. Theory 53(7), 30–49 (2012)Google Scholar
  286. 286.
    Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)zbMATHGoogle Scholar
  287. 287.
    Bai, Z.F., Zhao, Y., Wang, X.G.: Wear analysis of revolute joints with clearance in multibody systems. Sci. China Phy. Mech. Astron. 56(8), 1581–1590 (2013)Google Scholar
  288. 288.
    Xiang, W.W.K., Yan, S.Z., Wu, J.N.: A comprehensive method for joint wear prediction in planar mechanical systems with clearances considering complex contact conditions. Sci. China Technol. Sci. 58(1), 86–96 (2015)Google Scholar
  289. 289.
    Zhao, B., Zhang, Z.N., Dai, X.D.: Modeling and prediction of wear at revolute clearance joints in flexible multibody systems. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228(2), 317–329 (2014)Google Scholar
  290. 290.
    Mukras, S., Kim, N.H., Mauntler, N.A., et al.: Comparison between elastic foundation and contact force models in wear analysis of planar multibody system. J. Tribol. 132(3), 1–11 (2010)Google Scholar
  291. 291.
    Haneef, M.D., Randall, R.B., Smith, W.A., et al.: Vibration and wear prediction analysis of IC engine bearings by numerical simulation. Wear 384, 15–27 (2017)Google Scholar
  292. 292.
    Xu, L.X., Han, Y.C., Dong, Q.B., et al.: An approach for modelling a clearance revolute joint with a constantly updating wear profile in a multibody system: simulation and experiment. Multibody Syst. Dyn. 45(4), 457–478 (2019)MathSciNetGoogle Scholar
  293. 293.
    Sandu, A., Sandu, C., Ahmadian, M.: Modeling multibody systems with uncertainties. Part I: theoretical and computational aspects. Multibody Syst. Dyn. 15(4), 369–391 (2006)zbMATHGoogle Scholar
  294. 294.
    Walz, N.P., Fischer, M., Hanss, M., et al.: Uncertainties in multibody systems—potentials and challenges. In; International Conference on Noise and Vibration Engineering (ISMA)/International Conference on Uncertainty in Structural Dynamics (USD). Belgium, Leuven (2012)Google Scholar
  295. 295.
    He, B.Y., Feng, Y., Wang, S.X.: Study on the dynamics of multibody systems with uncertainty. J. Hebei Univ. Technol. 34(4), 7–14 (2005)Google Scholar
  296. 296.
    Jia, R.Y., Wang, T., Jiang, Z.Y., et al.: Uncertainty analysis of the rocket trail cover separation. J. Natl. Univ. Def. Technol. 36(6), 88–92 (2014)Google Scholar
  297. 297.
    Yan, S., Guo, P.: Kinematic accuracy analysis of flexible mechanisms with uncertain link lengths and joint clearances. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 225(C8), 1973–1983 (2011)Google Scholar
  298. 298.
    Li, J.L., Huang, H.Z., Yan, S.Z., et al.: Kinematic accuracy and dynamic performance of a simple planar space deployable mechanism with joint clearance considering parameter uncertainty. Acta Astronaut. 136, 34–45 (2017)Google Scholar
  299. 299.
    Acri, A., Nijman, E., Acri, A.: Influences of system uncertainties on the numerical transfer path analysis of engine systems. Mech. Syst. Signal Process. 95, 106–121 (2017)Google Scholar
  300. 300.
    Hays, J., Sandu, A., Sandu, C., et al.: Parametric design optimization of uncertain ordinary differential equation systems. In: ASME International Mechanical Engineering Congress and Exposition (IMECE). Denver, CO (2011)Google Scholar
  301. 301.
    Hays, J., Sandu, A., Sandu, C., et al.: Motion planning of uncertain ordinary differential equation systems. J. Comput. Nonlinear Dyn. 9(3), 031021 (2014)Google Scholar
  302. 302.
    Sabet, S., Poursina, M.: Forward kinematic analysis of non-deterministic articulated multibody systems with kinematically closed-loops in polynomial chaos expansion scheme. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA (2015)Google Scholar
  303. 303.
    Sabet, S., Poursina, M.: Uncertainty analysis of nondeterministic multibody systems. In: ASME International Mechanical Engineering Congress and Exposition (IMECE2016), Phoenix AZ (2016)Google Scholar
  304. 304.
    Wu, J.L., Luo, Z., Zhang, N., et al.: Dynamic computation of flexible multibody system with uncertain material properties. Nonlinear Dyn. 85(2), 1231–1254 (2016)zbMATHGoogle Scholar
  305. 305.
    Wu, J.L., Luo, Z., Zhang, N., et al.: Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties. Mech. Syst. Signal Process. 85, 487–511 (2017)Google Scholar
  306. 306.
    Rong, B., Rui, X.T., Tao, L., et al.: Perturbation finite element transfer matrix method for random eigenvalue problems of uncertain structures. J. Appl. Mech. 79(2), 021005 (2012)Google Scholar
  307. 307.
    Zhang, J., Wang, G.P., Rui, X.T.: Vibration analysis of systems with random parameters using perturbation transfer matrix method. J., Mach. Des. 32(10), 86–90 (2015)Google Scholar
  308. 308.
    Chen, W.D., Yu, Y.C., Jia, P., et al.: Application of finite volume method to structural stochastic dynamics. Adv. Mech. Eng. 391704 (2013)Google Scholar
  309. 309.
    Wang, G.P., Rui, X.T., Rong, B.: Evaluation of PDF of eigenvalue for multibody system with random parameters. In: 4th International Conference on Mechanical Engineering and Mechanics. Suzhou, China (2011)Google Scholar
  310. 310.
    Batou, A., Soize, C.: Rigid multibody system dynamics with uncertain rigid bodies. Multibody Syst. Dyn. 27(3), 285–319 (2012)MathSciNetzbMATHGoogle Scholar
  311. 311.
    Batou, A., Soize, C.: Random dynamical response of a multibody system with uncertain rigid bodies. Comput. Methods Stoch. Dyn. 26, 1–14 (2013)MathSciNetzbMATHGoogle Scholar
  312. 312.
    Alemayehu, F.M., Ekwaro-Osire, S.: Uncertainty considerations in the dynamics of gear-pair. In; ASME International Mechanical Engineering Congress and Exposition, Houston, TX (2012)Google Scholar
  313. 313.
    Alemayehu, F.M., Ekwaro-Osire, S.: Uncertainty considerations in the dynamic loading and failure of spur gear pairs. J. Mech. Des. 135(8), 084501 (2013)Google Scholar
  314. 314.
    Zhao, K., Chen, J.J., Yan, B., et al.: Dynamic analysis of multibody systems with probabilistic parameters. Chin. J. Theoret. Appl. Mech. 44(4), 802–806 (2012)Google Scholar
  315. 315.
    Wanichanon, T., Cho, H., Udwadia, F.E.: An approach to the dynamics and control of uncertain multi-body systems. In: IUTAM Symposium on Dynamical Analysis of Multibody Systems with Design Uncertainties, Stuttgart, Germany (2014)Google Scholar
  316. 316.
    Zha, Q.C., Rui, X.T., Yu, H.L., et al.: Study on the impact sensitivity of firing factors of self-propelled gun. J. Vib. Eng. 30(6), 938–946 (2017)Google Scholar
  317. 317.
    Wasfy, T.M., Noor, A.K.: Finite element analysis of flexible multibody systems with fuzzy parameters. Comput. Methods Appl. Mech. Eng. 160, 223–243 (1998)zbMATHGoogle Scholar
  318. 318.
    Yu, L.C.: Fuzzy RSM of flexible mechanism reliability analysis. J. Detect. Control 32(3), 87–90 (2010)Google Scholar
  319. 319.
    Wang, Z., Tian, Q., Hu, H.Y.: Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance. Nonlinear Dyn. 86(3), 1571–1597 (2016)Google Scholar
  320. 320.
    Xin P.F., Rong, J.L., Xiang, Y., et al.: Uncertainty analysis with interval parameters for flexible space manipulator. Trans. Beijing Inst. Technol. 37(10) (2017)Google Scholar
  321. 321.
    Wu, J.L., Zhang, Y.Q.: The dynamic analysis of multibody systems with uncertain parameters using interval method. Appl. Mech. Mater. 152–154, 1555–1561 (2012)Google Scholar
  322. 322.
    Wang, Z., Tian, Q., Hu, H.Y.: Dynamics of spatial rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84, 527–548 (2016)MathSciNetzbMATHGoogle Scholar
  323. 323.
    Feng, Y.J.: Uncertainty analysis of multibody dynamics based on metamodels, Master Dissertation. Nanjing University of Aeronautics and Astronautics, Nanjing (2013)Google Scholar
  324. 324.
    Koganti, P.B., Udwadia, F.E.: Dynamics and precision control of uncertain tumbling multibody systems. J. Guid. Control Dyn. 40(5), 1176–1190 (2017)Google Scholar
  325. 325.
    Wang, Z., Tian, Q., Hu, H.Y.: Dynamics study and sensitivity analysis of flexible multibody systems with interval parameters. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC (2016)Google Scholar
  326. 326.
    Wu, J.L., Luo, Z., Zhang, Y.Q., et al.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Meth. Eng. 95(7), 608–630 (2013)MathSciNetzbMATHGoogle Scholar
  327. 327.
    Zhan, Z.H., Zhang, X.M., Jian, Z.C.: Error modelling and motion reliability analysis of a planar parallel manipulator with multiple uncertainties. Mech. Mach. Theory 124, 55–72 (2018)Google Scholar
  328. 328.
    Wang, Z., Tian, Q., Hu, H.Y.: Dynamics of flexible multibody systems with hybrid uncertain parameters. Mech. Mach. Theory 121, 128–147 (2018)Google Scholar
  329. 329.
    Sun, D.Y., Chen, G.P.: Kinematic accuracy analysis of planar mechanisms with clearance involving random and epistemic uncertainty. Eur. J. Mech. A. Solids 58, 256–261 (2016)MathSciNetzbMATHGoogle Scholar
  330. 330.
    Wang, J., Liu, J.Y.: Rigid-flexible-thermal coupling dynamic analysis of flexible multi-body system. Chin. J. Appl. Mech. 29(5), 501–507 (2012)Google Scholar
  331. 331.
    Wu, J., Zhao, Z.H., Ren, G.X., et al.: Thermal-structural coupled tube element of multibody dynamics and its application. Eng. Mech. 30(11), 28–35 (2013)Google Scholar
  332. 332.
    You, B.D., Zhang, H.B., Wang, P.X., et al.: Satellite antenna dynamics and control with thermal effect. Aircr. Eng. Aerosp. Technol. 87(3), 274–283 (2015)Google Scholar
  333. 333.
    Grujicic, M., Arakere, G., Nallagatla, H., et al.: Computational investigation of blast survivability and off-road performance of an up-armoured high-mobility multi-purpose wheeled vehicle. Proc. Inst. Mech. Eng. D J. Automob. Eng. 223(D3), 301–325 (2009)Google Scholar
  334. 334.
    Cui, T., Zhang, W.H., Zhang, S.G., et al.: Study on the fluid-solid coupling vibration of train passing through platform at high speed. China Railw. Sci. 31(2), 50–55 (2010)Google Scholar
  335. 335.
    Cavagna, L., Masarati, P., Quaranta, G.: Coupled multibody/computational fluid dynamics simulation of maneuvering flexible aircraft. J. Aircr. 48(1), 92–106 (2011)Google Scholar
  336. 336.
    Chen, J.P., Zhou, R.R., Yu, W.J.: Dynamic response of liquid-multibody interaction problems in liquid-filled systems. Acta. Mech. Sin. 36(6), 724–731 (2004)Google Scholar
  337. 337.
    Sun, H.L.: Research on recursive dynamics of rigid-flexible-liquid coupling mechanical multibody systems, Ph.D. Dissertation, Nanjing: Nanjing University of Aeronautics and Astronautics (2011)Google Scholar
  338. 338.
    Fan, W.: Multi-field Coupling Dynamics For Multi-body System. Master Dissertation. Shanghai Jiao Tong University, Shanghai (2013)Google Scholar
  339. 339.
    Alioli, M., Morandini, M., Masarati, P.: Coupled multibody-fluid dynamics simulation of flapping wings. In; ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE), Portland, OR (2013)Google Scholar
  340. 340.
    Park, J.S., Sa, J.H., Park, S.H., et al.: Loosely coupled multibody dynamics-CFD analysis for a rotor in descending flight. Aerosp. Sci. Technol. 29(1), 262–276 (2013)Google Scholar
  341. 341.
    Li, Y., Castro, A.M., Sinokrot, T., et al.: Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence. Renewab. Energy 76, 338–361 (2015)Google Scholar
  342. 342.
    Li, Y., Castro, A.M., Martin, J.E., et al.: Coupled computational fluid dynamics/multibody dynamics method for wind turbine aero-servo-elastic simulation including drivetrain dynamics. Renewa. Energy 101, 1037–1051 (2017)Google Scholar
  343. 343.
    Gao, X.L.: Research on Multibody Dynamics and Fluid-structure Interaction of Parachute-body System, Ph.D. Dissertation, ChangSha: National University of Defense Technology (2016)Google Scholar
  344. 344.
    Liu, F., Liu, G., Jiang, X.: Simulation of aerial refueling system with multibody dynamics and CFD. Acta Aerodyn. Sin. 34(2), 276–280 (2016)Google Scholar
  345. 345.
    Schorgenhumer, M., Gruber, P.G., Gerstmayr, J.: Interaction of flexible multibody systems with fluids analyzed by means of smoothed particle hydrodynamics. Multibody Syst. Dyn. 30(1), 53–76 (2013)MathSciNetGoogle Scholar
  346. 346.
    Kim, S.P., Park, J.C., Sohn, J.H.: Co-simulation of fluid-multibody dynamics of sloshing flows with spring-damper system. Korean Soc. Comput. Fluids Eng. 22(4), 103–108 (2017)Google Scholar
  347. 347.
    Hu, W., Tian, Q., Hu, H.Y.: Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid. Sci. China Phy. Mech. Astron. 61(4), 044711 (2018)Google Scholar
  348. 348.
    Wasfy, T.M., Wasfy, H.M., Peters, J.M.: Coupled multibody dynamics and smoothed particle hydrodynamics for modeling vehicle water fording. In; ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA (2015)Google Scholar
  349. 349.
    Schorgenhumer, M., Humer, A., Gerstmayr, J.: Efficient fluid-structure interaction based on modally reduced multibody systems and smoothed particle hydrodynamics. In; 11th World Congress on Computational Mechanics (WCCM)/5th European Conference on Computational Mechanics (ECCM)/6th European Conference on Computational Fluid Dynamics (ECFD), Barcelona, Spain (2014)Google Scholar
  350. 350.
    Lutzenberger, S., Weissenfels, C.: Coupling of moving, actively controlled maglev vehicles and guide way systems: Algorithm and simulation. In: 6th International Conference on Structural Dynamics. France, Paris (2005)Google Scholar
  351. 351.
    Deng, Y., Wei, Q.C., Ni, Y.J., et al.: Modeling and simulation of high-speed Maglev vehicle/guideway/ bridge coupling system. In: 26th Chinese Control Conference. Zhangjiajie, China (2007)Google Scholar
  352. 352.
    Liang, D., Song, Y.M., Sun, T., et al.: Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes. Mech. Syst. Signal Process. 103, 413–439 (2018)Google Scholar
  353. 353.
    Gao, M.M., Pan, J.Y.: Coupling vibration analysis for train-track-bridge system. Struct. Dyn. 1–3, 1069–1075 (2005)Google Scholar
  354. 354.
    Li, T., Zhang, J.Y., Zhang, W.H.: Coupling dynamics performance of vehicle-track under cross wind. J. Traffic Transp. Eng. 11(5), 55–60 (2011)Google Scholar
  355. 355.
    Barrios, G.K.P., Tavares, L.M.: A preliminary model of high pressure roll grinding using the discrete element method and multi-body dynamics coupling. Int. J. Miner. Process. 56(SI): 32-42 (2016)Google Scholar
  356. 356.
    Busch, M., Schweizer, B.: Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach. Arch. Appl. Mech. 82(6), 723–741 (2012)zbMATHGoogle Scholar
  357. 357.
    Lin, T.J., He, Z.Y., Zhong, S., et al.: Multi-body dynamic simulation and vibro-acoustic coupling analysis of marine gearbox. J. Hunan Univ. Natl. Sci. 42(2), 22–28 (2015)Google Scholar
  358. 358.
    Fleissner, F., Lehnart, A., Eberhard, P.: Dynamic simulation of sloshing fluid and granular cargo in transport vehicles. Veh. Syst. Dyn. 48(1), 3–15 (2010)Google Scholar
  359. 359.
    Eun, W., Kim, J., Kwon, O.J., et al.: Coupled analysis of thermo-fluid-flexible multi-body dynamics of a two-dimensional engine nozzle. Int. J. Aeronaut. Space Sci. 18(1), 70–81 (2017)Google Scholar
  360. 360.
    Hashemi, S., Kroker, A., Bobach, L., et al.: Multibody dynamics of pivot slipper pad thrust bearing in axial piston machines incorporating thermal elastohydrodynamics and mixed lubrication model. Tribol. Int. 96, 57–76 (2016)Google Scholar
  361. 361.
    Yue, B.Z.: Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft. AIAA J. 49(10), 2090–2099 (2011)zbMATHGoogle Scholar
  362. 362.
    Lu, J.: Study on nonlinear dynamics of a liquid-filled spacecraft with flexible appendages, Ph.D. Dissertation, Beijing: Tsinghua University (2006)Google Scholar
  363. 363.
    Bauchau, O.A.: Computational schemes for flexible, nonlinear multi-body systems. Multibody Syst. Dyn. 2(2), 169–225 (1998)MathSciNetzbMATHGoogle Scholar
  364. 364.
    Wang, Q., Lu, Q.S.: Advances in the numerical methods for Lagrange’s equations of multibody systems, 2001. Adv. Mech. 31(1), 9–17 (2001)Google Scholar
  365. 365.
    Wang, G.P.: Numerical algorithms of multibody system dynamics. Comput. Simul. 23(12), 86–89 (2006)Google Scholar
  366. 366.
    Rong, B., Rui, X.T., Wang, G.P.: Developments of studies on multibody system dynamics. J. Vib. Shock 30(7), 178–187 (2011)Google Scholar
  367. 367.
    Fu, F.F.: Research on numerical methods of differential / algebraic equations for multibody system dynamics. In: 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT). Beijing, China (2017)Google Scholar
  368. 368.
    Katsikadelis, J.T.: A new direct time integration method for the equations of motion in structural dynamics. Z. Angew. Math. Mech. 94(9), 757–774 (2014)MathSciNetzbMATHGoogle Scholar
  369. 369.
    Jia, C.G., Li, Y.M., Xia, H.L., et al.: Novel partitioned integration method based on Newmark’s scheme for structural dynamic problems. Appl. Mech. Mater. 580–583, 2996–3002 (2014)Google Scholar
  370. 370.
    Gavrea, B., Negrut, D., Potra, F.A.: The Newmark integration method for simulation of multibody systems: Analytical considerations. In: ASME International Mechanical Engineering Congress and Exposition, Orlando, FL (2005)Google Scholar
  371. 371.
    Xiong, X.G., Kikuuwe, R., Yamamoto, M.: A differential algebraic method to approximate nonsmooth mechanical systems by ordinary differential equations. J. Appl. Math. 320276 (2013)Google Scholar
  372. 372.
    Qian, S.L., He, B., Yao, L.K., et al.: Improved finite element transfer matrix method of plane beam elements using the absolute nodal coordinate formulation. J. Mech. Strength 38(3), 575–579 (2016)Google Scholar
  373. 373.
    D’Ambrosio, R., Ferro, M., Paternoster, B.: Collocation-based two step Runge-Kutta methods for ordinary differential equations. In: International Conference on Computational Science and Its Applications (ICCSA 2008). Perugia, Italy (2008)Google Scholar
  374. 374.
    Butcher, J.C.: Runge-Kutta methods for ordinary differential equations. In: 3rd International Conference on Numerical Analysis and Optimization- Theory, Methods, Applications and Technology Transfer, Muscat, Oman (2014)Google Scholar
  375. 375.
    Haug, E.J.: An ordinary differential equation formulation for multibody dynamics: holonomic constraints. J. Comput. Inf. Sci. Eng. 16(2), 021007 (2016)Google Scholar
  376. 376.
    Othman, K.I., Ibrahim, Z.B., Suleiman, M., et al.: Automatic intervalwise block partitioning using Adams type method and backward differentiation formula for solving ODEs. Appl. Math. Comput. 188(2), 1642–1646 (2007)MathSciNetzbMATHGoogle Scholar
  377. 377.
    Blasik, M.: A new variant of Adams - Bashforth - Moulton method to solve sequential fractional ordinary differential equation. In; 21st International Conference on Methods and Models in Automation and Robotics (MMAR). Miedzyzdroje, Poland (2016)Google Scholar
  378. 378.
    Feng, B.P.: The Gear program for solving initial value problems in general or stiff ordinary differential equations. J. Numer. Methods Comput. Appl. 1, 12–23 (1982)MathSciNetGoogle Scholar
  379. 379.
    Nejad, L.A.M.: A comparison of stiff ODE solvers for astrochemical kinetics problems. Astrophys. Space Sci. 299(1), 1–29 (2005)zbMATHGoogle Scholar
  380. 380.
    Rill, G.: A modified implicit Euler algorithm for solving vehicle dynamic equations. Multibody Syst. Dyn. 15, 1–24 (2006)zbMATHGoogle Scholar
  381. 381.
    Bursi, O.S., He, L., Bonelli, A., et al.: Novel generalized-alpha methods for interfield parallel integration of heterogeneous structural dynamic systems. J. Comput. Appl. Math. 234(7), 2250–2258 (2010)MathSciNetzbMATHGoogle Scholar
  382. 382.
    Attili, B.S.: The Hilber-Hughes-Taylor-alpha (HHT-alpha) method compared with an implicit Runge-Kutta for second-order systems. Int. J. Comput. Math. 87(8), 1755–1767 (2010)MathSciNetzbMATHGoogle Scholar
  383. 383.
    Weber, S., Arnold, M., Valasek, M.: Quasistatic approximations for stiff second order differential equations. Appl. Numer. Math. 62(10), 1579–1590 (2012)MathSciNetzbMATHGoogle Scholar
  384. 384.
    Wang, X.M.: Research of numerical solution for dynamics of multibody systems, Master Dissertation. Xidian University, Xi’An (2009)Google Scholar
  385. 385.
    Pan, ZhK, Sun, H.Q., Zang, H.W., et al.: Numerical methods for stiff differential equations of flexible multibody system dynamics. J. Qingdao Univ. 11(3), 36–39 (1996)Google Scholar
  386. 386.
    Zhong, W.X.: Precise computation for transient analysis. Comput. Struct. Mech. Appl. 12(1), 1–6 (1995)MathSciNetGoogle Scholar
  387. 387.
    Lv, H.X., Yu, H.J., Qiu, C.H.: An analytical step-by-step integral procedure of dynamics equations. Eng. Mech. 18(5), 1–7 (2001)Google Scholar
  388. 388.
    Lv, H.X., Yu, H.J., Qiu, C.H.: Direct integration methods with integral model for dynamic systems. Appl. Math. Mech. 22(2), 151–156 (2001)MathSciNetGoogle Scholar
  389. 389.
    Liu, T.L., Liu, J.Y.: A step-by-step integration method based on principle of minimum transformed energy. Eng. Mech. 22(2), 1–24 (2005)MathSciNetGoogle Scholar
  390. 390.
    Oghbaei, M., Anderson, K.S.: A new time-finite-element implicit integration scheme for multibody system dynamics simulation. Comput. Methods Appl. Mech. Eng. 195, 7006–7019 (2006)MathSciNetzbMATHGoogle Scholar
  391. 391.
    Pu, J.P.: Numerical computation for structural dynamic responses based on a highly accurate differential quadrature method. J. Nanjing Univ. Aeronaut. Astronaut. 36(3), 151–156 (2004)MathSciNetGoogle Scholar
  392. 392.
    Wang, Y.F., Chu, D.W.: A coupled precise and finite difference time integration method for structural dynamics. Acta Mech. Solida Sin. 24(4), 469–474 (2003)Google Scholar
  393. 393.
    Zou, P., Qu, X.G.: Quasi wavelet-precise time-integration method for solving the vibration problems of beam. J. Shaanxi Univ. Sci. Technol. 29(6), 140–143 (2011)Google Scholar
  394. 394.
    Pan, Y.H., Wang, Y.F.: Gauss precise time-integration of complex damping vibration systems. Eng. Mech. 29(2), 16–20 (2012)Google Scholar
  395. 395.
    Gransden, D., Bornemann, P., Rose, M., et al.: A constrained generalised-alpha method for coupling rigid parallel chain kinematics and elastic bodies. Comput. Mech. 55(3), 527–541 (2015)MathSciNetzbMATHGoogle Scholar
  396. 396.
    Parida, N.C., Raha, S.: Regularized numerical integration of multibody dynamics with the generalized alpha method. Appl. Math. Comput. 215(3), 1224–1243 (2009)MathSciNetzbMATHGoogle Scholar
  397. 397.
    Kobis, M.A., Arnold, M.: Convergence of generalized-alpha time integration for nonlinear systems with stiff potential forces. Multibody Syst. Dyn. 37(1), 107–125 (2016)MathSciNetzbMATHGoogle Scholar
  398. 398.
    Shabana, A.A., Hussein, B.A.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: Application to multibody systems. J. Sound Vib. 327(3–5), 557–563 (2009)Google Scholar
  399. 399.
    Zhang, L., Zhang, D.G.: Two-loop implicit integration method based on backward differential formulation for differential-algebraic equations of multibody system dynamics. J. Mech. Eng. 52(7), 79–87 (2016)Google Scholar
  400. 400.
    Wang, J.L., Rodriguez, J., Keribar, R.: Integration of flexible multibody systems using Radau IIA algorithms. J. Comput. Nonlinear Dyn. 5(4), 041008 (2010)Google Scholar
  401. 401.
    Ma, X.T., Zhai, Y.B., Luo, S.Q.: Numerical method of multibody dynamics based on theta1 method. Chin. J. Theoret. Appl. Mech. 43(5), 931–938 (2011)Google Scholar
  402. 402.
    Ding, J.Y., Pan, Z.K., Chen, L.Q.: Generalized-alpha-SSF method for ODAEs of multibody dynamics. In: 14th Asia Pacific Vibration Conference (APVC) on Dynamics for Sustainable Engineering. China, Hong Kong (2011)Google Scholar
  403. 403.
    Liu, Y., Ma, J.M.: Discrete null space method for the Newmark integration of multibody dynamic systems. Chin. J. Mech. Eng. 48(5), 87–91 (2012)Google Scholar
  404. 404.
    Liu, Y., Ma, J.M.: Improved discrete null space method for dynamics analysis constrained multibody systems. Chin. J. Comput. Mech. 30(4), 496–501 (2013)Google Scholar
  405. 405.
    Milenkovic, P.: Multi-integral method for solving the forward dynamics of stiff multibody systems. J. Dyn. Syst. Meas. Control 135(5): 051014 (2013)Google Scholar
  406. 406.
    Ma, X.T., Zhai, Y.B., Luo, S.Q.: Dynamics simulation of multi-body system based on backward differentiation formulas. Comput. Integr. Manuf. Syst. 19(1), 119–126 (2013)Google Scholar
  407. 407.
    Milenkovic, P.: Numerical solution of stiff multibody dynamic systems based on kinematic derivatives. J. Dyn. Syst. Meas. Control 136(6), 061001 (2014)Google Scholar
  408. 408.
    Wang, J.L., Li, Z.G.: Implementation of HHT algorithm for numerical integration of multibody dynamics with holonomic constraints. Nonlinear Dyn. 80(1–2), 817–825 (2015)MathSciNetGoogle Scholar
  409. 409.
    Prescott, W.: Application of scaling to multibody dynamics simulations. In: ASME International Mechanical Engineering Congress and Exposition (IMECE2015). Houston, TX (2015)Google Scholar
  410. 410.
    Ding, J.Y.: Genetic algorithm for design optimization of multibody dynamics using differential-algebraic equation integrators. Adv. Mech. Eng. 7(4), 1687814015581260 (2015)Google Scholar
  411. 411.
    Sun, W.: Numerical algorithms for differential-algebraic equations of multibody dynamics. In: 16th International Conference on Control, Automation and Systems (ICCAS). Gyeongju, South Korea (2016)Google Scholar
  412. 412.
    Carpinelli, M., Gubitosa, M., Mundo, D.: Automated independent coordinates’ switching for the solution of stiff DAEs with the linearly implicit Euler method. Multibody Syst. Dyn. 36(1), 67–85 (2016)MathSciNetzbMATHGoogle Scholar
  413. 413.
    Sommer, H.J.: Third-order differential-algebraic equations for improved integration of multibody dynamics. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE 2017). Cleveland, OH (2017)Google Scholar
  414. 414.
    Haug, E.: An index 0 Differential-Algebraic equation formulation for multibody dynamics: Holonomic constraints. Mech. Based Des. Struct. Mach. 45(4), 479–506 (2017)Google Scholar
  415. 415.
    Krinner, A., Schindler, T., Rixen, D.J.: Time integration of mechanical systems with elastohydrodynamic lubricated joints using Quasi-Newton method and projection formulations. Int. J. Numer. Meth. Eng. 110(6), 523–548 (2017)MathSciNetzbMATHGoogle Scholar
  416. 416.
    Uhlar, S., Betsch, P.: On the derivation of energy consistent time stepping schemes for friction afflicted multibody systems. Comput. Struct. 88(11–12), 737–754 (2010)Google Scholar
  417. 417.
    Arnold, M., Hante, S.: Implementation details of a generalized-\(\alpha \) differential-algebraic equation Lie group method. J. Comput. Nonlinear Dyn. 12(2), 021002 (2016)Google Scholar
  418. 418.
    Arnold, M., Cardona, A., Bruls, O.: Order reduction in time integration caused by velocity projection. J. Mech. Sci. Technol. 29(7), 2579–2585 (2015)Google Scholar
  419. 419.
    Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech. Mach. Theory 48, 121–137 (2012)Google Scholar
  420. 420.
    Ding, J.Y., Pan, Z.K.: The Lie group Euler methods of multibody system dynamics with holonomic constraints. Adv. Mech. Eng. 10(4), 168781401876415 (2018)Google Scholar
  421. 421.
    Negrut, D., Jay, L.O., Khude, N.: A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics. J. Comput. Nonlinear Dyn. 4(2), 021008 (2009)Google Scholar
  422. 422.
    Betsch, P., Hesch, C., Sanger, N., et al.: Variational integrators and energy-momentum schemes for flexible multibody dynamics. J. Comput. Nonlinear Dyn. 5(3), 031001 (2010)Google Scholar
  423. 423.
    Huang, Y.G., Yin, Z.P., Deng, Z.C., et al.: Progress in Geometric integration method for multibody dynamics. Adv. Mech. 39(1), 44–57 (2009)Google Scholar
  424. 424.
    Juan, C.: García Orden, Energy considerations for the stabilization of constrained mechanical systems with velocity projection. Nonlinear Dyn. 60(1–2), 49–62 (2010)Google Scholar
  425. 425.
    Flores, P., Machado, M., Seabra, E., et al.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011019 (2010)Google Scholar
  426. 426.
    Hussein, B.A., Shabana, A.A.: Sparse matrix implicit numerical integration of the stiff differential/algebraic equations: Implementation. Nonlinear Dyn. 65(4), 369–382 (2011)MathSciNetGoogle Scholar
  427. 427.
    Lin, S.T., Chen, M.W.: A PID type constraint stabilization method for numerical Integration of multibody systems. J. Comput. Nonlinear Dyn. 6(4), 044501 (2011)Google Scholar
  428. 428.
    Liu, Y., Ma, J.M.: Adaptive feedback parameters for Baumgartes constraint violation stabilization methods of multibody systems equations of motion. J. Fudan Univ. Nat. Sci. 51(4), 432–436 (2012)MathSciNetGoogle Scholar
  429. 429.
    Orden, J.C.G., Martin, S.C.: Controllable velocity projection for constraint stabilization in multibody dynamics. Nonlinear Dyn. 68(1–2), 245–257 (2012)MathSciNetzbMATHGoogle Scholar
  430. 430.
    Ding, J.Y., Pan, Z.K.: Generalized-alpha projection method for differential-algebraic equations of multibody dynamics. Eng. Mech. 30(4), 380–384 (2013)Google Scholar
  431. 431.
    Schweizer, B., Li, P.: Solving differential-algebraic equation systems: alternative index-2 and index-1 approaches for constrained mechanical systems. J. Comput. Nonlinear Dyn. 11(4), 044501 (2015)Google Scholar
  432. 432.
    Wei, Y., Deng, Z.C., Li, Q.J., et al.: Projected Runge-Kutta methods for constrained Hamiltonian systems. Appl. Math. Mech. 37(8), 1077–1094 (2016)MathSciNetzbMATHGoogle Scholar
  433. 433.
    Omar, M.A.: Modeling and simulation of structural components in recursive closed-loop multibody systems. Multibody Syst. Dyn. 41(1), 47–74 (2017)MathSciNetzbMATHGoogle Scholar
  434. 434.
    Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)MathSciNetzbMATHGoogle Scholar
  435. 435.
    Melanz, D., Fang, L.N., Jayakumar, P., et al.: A comparison of numerical methods for solving multibody dynamics problems with frictional contact modeled via differential variational inequalities. Comput. Methods Appl. Mech. Eng. 320(15), 668–693 (2017)MathSciNetGoogle Scholar
  436. 436.
    Haddouni, M., Acary, V., Garreau, S., et al.: Comparison of several formulations and integration methods for the resolution of DAEs formulations in event-driven simulation of nonsmooth frictionless multibody dynamics. Multibody Syst. Dyn. 41(3), 201–231 (2017)MathSciNetGoogle Scholar
  437. 437.
    Lee, K.S.: A stabilized numerical solution for the dynamic contact of the bodies having very stiff constraint on the contact point. Comput. Mech. 46(4), 533–543 (2010)zbMATHGoogle Scholar
  438. 438.
    Lee, K.S.: A short note for numerical analysis of dynamic contact considering impact and a very stiff spring-damper constraint on the contact point. Multibody Syst. Dyn. 26(4), 425–439 (2011)MathSciNetzbMATHGoogle Scholar
  439. 439.
    Schindler, T., Rezaei, S., Kursawe, J., et al.: Half-explicit time stepping schemes on velocity level based on time-discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 290, 250–276 (2015)zbMATHGoogle Scholar
  440. 440.
    Guo, X., Zhang, D.G., Chen, S.J.: Application of Hilber-Hughes-Taylor-alpha method to dynamics of flexible multibody system with contact and constraint. Acta Phys. Sin. 66(16), 164501 (2017)Google Scholar
  441. 441.
    He, B., Rui, X.T., Wang, G.P.: Riccati discrete time transfer matrix method for elastic beam undergoing large overall motion. Multibody Syst. Dyn. 18(4), 579–598 (2007)MathSciNetzbMATHGoogle Scholar
  442. 442.
    Rong, B., Rui, X.T., Wang, G.P., et al.: Modified finite element transfer matrix method for eigenvalue problem of flexible structures. J. Appl. Mech. 78(2), 021016 (2011)Google Scholar
  443. 443.
    Horner, G.C.: The Riccati transfer matrix method, Ph.D. dissertation, University of Virginia, USA (1975)Google Scholar
  444. 444.
    Vyasarayani, C.P., Uchida, T., McPhee, J.: Parameter identification in multibody systems using Lie series solutions and symbolic computation. J. Comput. Nonlinear Dyn. 6(4), 041011 (2011)Google Scholar
  445. 445.
    Dallali, H., Mosadeghzad, M., Medrano-Cerda, G.A., et al.: Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach. In: IEEE International Conference on Mechatronics (ICM). Vicenza, Italy (2013)Google Scholar
  446. 446.
    Gede, G., Peterson, D.L., Nanjangud, A.S.: Constrained multibody dynamics with Python: from symbolic equation generation to publication. In: ASME International Design Engineering Technical Conferences / Computers and Information in Engineering Conference (IDETC/CIE). Portland, OR (2013)Google Scholar
  447. 447.
    Hall, A., Schmitke, C., McPhee, J.: Symbolic formulation of a path-following joint for multibody dynamics. In: ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC). Buffalo, NY (2014)Google Scholar
  448. 448.
    Burkhardt, M., Seifried, R., Eberhard, P.: Aspects of symbolic formulations in flexible multibody systems. J. Comput. Nonlinear Dyn. 9(4), 041013 (2014)Google Scholar
  449. 449.
    Wang, E.X., Zou, J.C., Xue, G.P., et al.: Development of efficient nonlinear benchmark bicycle dynamics for control applications. IEEE Trans. Intell. Transp. Syst. 16(4), 2236–2246 (2015)Google Scholar
  450. 450.
    Peterson, D.L., Gede, G., Hubbard, M.: Symbolic linearization of equations of motion of constrained multibody systems. Multibody Syst. Dyn. 33(2), 143–161 (2015)MathSciNetzbMATHGoogle Scholar
  451. 451.
    Banerjee, J., McPhee, J.: Graph-theoretic sensitivity analysis of multi-domain dynamic systems: theory and symbolic computer implementation. Nonlinear Dyn. 85(1), 203–227 (2016)MathSciNetGoogle Scholar
  452. 452.
    Ali, S.: A unified dynamic algorithm for wheeled multibody systems with passive joints and nonholonomic constraints. Multibody Syst. Dyn. 41(4), 317–346 (2017)MathSciNetzbMATHGoogle Scholar
  453. 453.
    Lot, R., Massaro, M.: A symbolic approach to the multibody modeling of road vehicles. Int. J. Appl. Mech. 09, 1750068 (2017)Google Scholar
  454. 454.
    Mauny, J., Porez, M., Boyer, F.: Symbolic dynamic modelling of locomotion systems with persistent contacts—Application to the 3D Bicycle. IFAC-PapersOnLine 50(1), 7598–7605 (2017)Google Scholar
  455. 455.
    Ros, J., Plaza, A., Iriarte, X., et al.: Symbolic multibody methods for real-time simulation of railway vehicles. Multibody Syst. Dyn. 42(4), 469–493 (2018)MathSciNetGoogle Scholar
  456. 456.
    Zhang, J.: Modeling and numerical solution for dynamic system of spatial multi rigid bodies and shell structure with large deformation, Ph.D. dissertation, Beijing: Tsinghua University, China (2015)Google Scholar
  457. 457.
    Yenduri, A., Ghoshal, R., Jaiman, R.K.: A new partitioned staggered scheme for flexible multibody interactions with strong inertial effects. Comput. Methods Appl. Mech. Eng. 315, 316–347 (2017)MathSciNetGoogle Scholar
  458. 458.
    Shokouhfar, S., Khorsandijou, S.M.: Developing a numerical simulation software for 3D multibody systems based on a unified computational modeling technique. In: 7th International Conference on Multibody Systems. Nonlinear Dynamics and Control, San Diego, CA (2009)Google Scholar
  459. 459.
    Ding, J.Y., Pan, Z.K.: Adaptive time integration method for DAES of multibody systems. In: ASME International Mechanical Engineering Congress and Exposition, Houston, TX (2012)Google Scholar
  460. 460.
    Acary, V.: Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts. Appl. Numer. Math. 62(10), 1259–1275 (2012)MathSciNetzbMATHGoogle Scholar
  461. 461.
    Arnold, M.: Multi-rate time integration for large scale multibody system models. In: UTAM Symposium on Multiscale Problems in Multibody System Contacts. Springer, pp. 1–10 (2006)Google Scholar
  462. 462.
    Miao, J.C., Zhu, P., Shi, G.L., Chen, G.L.: Study on sub-cycling algorithm for flexible multi-body system-integral theory and implementation flow chart. Comput. Mech. 41, 257–268 (2008)zbMATHGoogle Scholar
  463. 463.
    Miao, J.C., Zhu, P., Shi, G.L., Chen, G.L.: Study on sub-cycling algorithm for flexible multi-body system: stability analysis and numerical examples. Comput. Mech. 41, 269–277 (2008)zbMATHGoogle Scholar
  464. 464.
    Metaxas, D., Koh, E.: Flexible multibody dynamics and adaptive finite element techniques for model synthesis and estimation. Comput. Methods Appl. Mech. Eng. 136(1–2), 1–25 (1996)zbMATHGoogle Scholar
  465. 465.
    Espinosa, H.D., Zavattieri, P.D., Emore, G.L.: Adaptive FEM computation of geometric and material nonlinearities with application to brittle failure. Mech. Mater. 29(3–4), 275–305 (1998)Google Scholar
  466. 466.
    Ma, Z.D., Perkins, N.C.: A super-element of track-wheel-terrain interaction for dynamic simulation of tracked vehicles. Multibody Syst. Dyn. 15(4), 347–368 (2006)zbMATHGoogle Scholar
  467. 467.
    Li, Q., Wang, T.S.: Adaptive mode method in inverse dynamics of a rotating flexible manipulator with high-frequency excitation. Chin. J. Space Sci. 28(4), 345–349 (2008)MathSciNetGoogle Scholar
  468. 468.
    Gundling, C., Sitaraman, J., Roget, B., et al.: Application and validation of incrementally complex models for wind turbine aerodynamics, isolated wind turbine in uniform inflow conditions. Wind Energy 18(11), 1893–1916 (2015)Google Scholar
  469. 469.
    DeBenedictis, A., Atherton, T.J., Rodarte, A.L., et al.: Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh. Phys. Rev. 97(3), 032701 (2018)Google Scholar
  470. 470.
    Valentin, J., Sprenger, M., Pfluger, D., et al.: Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models. Int. J. Numer. Methods Biomed. Eng. 34(5), e2965 (2018)MathSciNetGoogle Scholar
  471. 471.
    Gravouil, A., Combescure, A., Brun, M.: Heterogeneous asynchronous time integrators for computational structural dynamics. Int. J. Numer. Meth. Eng. 102(3–4), 202–232 (2015)MathSciNetzbMATHGoogle Scholar
  472. 472.
    Fekak, F.E., Brun, M., Gravouil, A., et al.: A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics. Comput. Mech. 60(1), 1–21 (2017)MathSciNetzbMATHGoogle Scholar
  473. 473.
    Lunk, C., Simeon, B.: The reverse method of lines in flexible multibody dynamics. In: 14th European Conference for Mathematics in Industry. Leganes, Spain (2006)Google Scholar
  474. 474.
    Koziara, T., Bicanic, N.: A distributed memory parallel multibody contact dynamics code. Int. J. Numer. Meth. Eng. 87(1–5), 437–456 (2011)zbMATHGoogle Scholar
  475. 475.
    Sohn, J.H.: Calculation effect of GPU parallel programing for planar multibody system dynamics. J. Korean Soc. Power Syst. Eng. 16(4), 12–16 (2012)MathSciNetGoogle Scholar
  476. 476.
    Melanz, D., Khude, N., Jayakumar, P., et al.: A GPU parallelization of the absolute nodal coordinate formulation for applications in flexible multibody dynamics. In: ASME International Design Engineering Technical Conferences/Computers Information in Engineering Conference, Chicago, IL (2012)Google Scholar
  477. 477.
    Cao, D.Z., Qiang, H.F., Ren, G.X.: Parallel computing studies of flexible multibody system dynamics using OpenMP and Pardiso. J. Tsinghua Univ. Sci. Technol. 52(11), 1643–1649 (2012)Google Scholar
  478. 478.
    Khude, N., Stanciulescu, I., Melanz, D., et al.: Efficient parallel simulation of large flexible body systems with multiple contacts. J. Comput. Nonlinear Dyn. 8(4), 041003 (2013)Google Scholar
  479. 479.
    Clauberg, J., Leistner, M., Ulbrich, H.: Hybrid-parallel calculation of Jacobians in multi-body dynamics. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, Portland, OR (2013)Google Scholar
  480. 480.
    Zhang, J., Zhao, Y., Zhang, Y.H., et al.: Non-stationary random vibration of a coupled vehicle-slab track system using a parallel algorithm based on the pseudo excitation method. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 227(F3), 203–216 (2013)Google Scholar
  481. 481.
    Negrut, D., Tasora, A., Mazhar, H., et al.: Leveraging parallel computing in multibody dynamics. Multibody Syst. Dyn. 27(1), 95–117 (2012)zbMATHGoogle Scholar
  482. 482.
    Negrut, D., Serban, R., Mazhar, H., et al.: Parallel computing in multibody system dynamics: why, when, and how. J. Comput. Nonlinear Dyn. 9(4), 041007 (2014)Google Scholar
  483. 483.
    Sun, W., Fan, X.G.: Parallel iterative algorithm for constrained multibody systems in mechanics. In: 33rd Chinese Control Conference (CCC). Nanjing, China (2014)Google Scholar
  484. 484.
    Serban, R., Melanz, D., Li, A., et al.: A GPU-based preconditioned Newton-Krylov solver for flexible multibody dynamics. Int. J. Numer. Methods Eng. 102(9), 1585–1604 (2015)MathSciNetzbMATHGoogle Scholar
  485. 485.
    Hu, W., Tian, Q., Hu, H.Y.: Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH. Nonlinear Dyn. 84(4), 2447–2465 (2016)MathSciNetGoogle Scholar
  486. 486.
    Yang, H.G., Rui, X.T., Liu, Y.X., et al.: Study on distributed parallel computing of transfer matrix method for multibody systems. J. Vib. Eng. 27(1), 9–15 (2014)Google Scholar
  487. 487.
    Gu, J.J., Rui, X.T., Chen, G.L., et al.: Distributed parallel computing of the recursive eigenvalue search in the context of transfer matrix method for multibody systems. Adv. Mech. Eng. 8(11), 1–15 (2016)Google Scholar
  488. 488.
    Shin, S., Park, J., Park, J.: Explicit formulation of multibody dynamics based on principle of dynamical balance and its parallelization. Multibody Syst. Dyn. 37(2), 175–193 (2016)MathSciNetzbMATHGoogle Scholar
  489. 489.
    Li, P., Liu, C., Tian, Q., et al.: Dynamics of a deployable mesh reflector of satellite antenna: parallel computation and deployment simulation. J. Comput. Nonlinear Dyn. 11(6), 061005 (2016)Google Scholar
  490. 490.
    Warwas, K., Tengler, S.: Dynamic optimization of multibody system using multithread calculations and a modification of variable metric method. J. Comput. Nonlinear Dyn. 12(5), 051031 (2017)Google Scholar
  491. 491.
    Wu, Q., Spiryagin, M., Cole, C.: Parallel computing scheme for three-dimensional long train system dynamics. J. Comput. Nonlinear Dyn. 12(4), 044502 (2017)Google Scholar
  492. 492.
    Han, S.L., Bauchau, O.A.: Parallel time-integration of flexible multibody dynamics based on Newton-waveform method. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE 2017). Cleveland, OH (2017)Google Scholar
  493. 493.
    Liu, C., Ye, Z.S., Hu, H.Y.: An efficient parallel algorithm for flexible multibody systems based on domain decomposition method. Sci. Sin. Phys. Mech. Astron. 47(10): 104603-1–104603-11 (2017)Google Scholar
  494. 494.
    Ambrosio, J., Rauter, F., Pombo, J., et al.: Dynamics of high-speed train pantograph-catenary co-simulation of finite element and multibody codes. In: 2nd International Symposium on Computational Mechanics and 12th International Conference on the Enhancement and Promotion of Computational Methods in Engineering and Science. China, Hong Kong (2009)Google Scholar
  495. 495.
    Massat, J.P., Laurent, C., Bianchi, J.P., et al.: Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools. Veh. Syst. Dyn. 52(1), 338–354 (2014)Google Scholar
  496. 496.
    Arnold, M.: Stability of sequential modular time integration methods for coupled multibody system models. J. Comput. Nonlinear Dyn. 5(3), 031003 (2010)Google Scholar
  497. 497.
    Gonzalez, F., Naya, M.A., Luaces, A., et al.: On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics. Multibody Syst. Dyn. 25(4), 461–483 (2011)zbMATHGoogle Scholar
  498. 498.
    Pandey, J., Reddy, N.S., Ray, R., et al.: Multi-body dynamics of a swimming frog: A co-simulation approach. In: IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen, China (2013)Google Scholar
  499. 499.
    Fancello, M., Masarati, P., Morandini, M.: Adding non-smooth analysis capabilities to general-purpose multibody dynamics by co-simulation. In: ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE). Portland, OR (2013)Google Scholar
  500. 500.
    Schweizer, B., Lu, D.X., Li, P.: Co-simulation method for solver coupling with algebraic constraints incorporating relaxation techniques. Multibody Syst. Dyn. 36(1), 1–36 (2016)MathSciNetzbMATHGoogle Scholar
  501. 501.
    Schneider, F., Burger, M., Arnold, M., et al.: A new approach for force-displacement co-simulation using kinematic coupling constraints. Z. Angew. Math. Mech. 97(9), 1147–1166 (2017)MathSciNetGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Bao Rong
    • 1
  • Xiaoting Rui
    • 2
  • Ling Tao
    • 1
    Email author
  • Guoping Wang
    • 2
  1. 1.Institute of Plasma PhysicsChinese Academy of Sciences (ASIPP)HefeiPeople’s Republic of China
  2. 2.Institute of Launch DynamicsNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations