Reliable and efficient processing of sensory information at body temperature by rodent cortical neurons

  • Xin Fu
  • Yuguo YuEmail author
Original paper


Some pathological conditions, such as infections and febrile seizures, may cause temperature fluctuations in the brain. We ask here how these temperature fluctuations, particularly hypothermia and hyperthermia, affect the cortical information coding performance and response reliability of warm-blooded animals. We studied this issue by a combination of in vitro whole-cell patch clamp recordings from cortical pyramidal neurons and computational simulations of Hodgkin–Huxley cortical neuronal model at different temperatures. A significantly higher reliability of the neuronal response to repeated input signals was observed at physiological temperature (\(\sim 35\,^{\circ }\hbox {C}\)) than that at a much lower temperature (\(\sim 24\,^{\circ }\hbox {C}\)) or upon hyperthermia (\(\sim 41\,^{\circ }\hbox {C}\)). In addition, the firing rate of excitatory neurons (i.e., pyramidal neurons) was increased gradually, while it decreased gradually for inhibitory neurons (e.g., PV interneurons) as the temperature increased from 25 to \(40\,^{\circ }\hbox {C}\). The opposite changes in the response activity level between pyramidal neurons and interneurons suggested a shift in the excitatory/inhibitory (E/I) balance in the local network circuit as a function of changing temperature. An analysis of the information coding efficiency suggested that the pyramidal neurons displayed the maximal response reliability with the highest coding efficiency and information transmission rate at body temperature, suggesting that the E/I balance observed at this temperature might be optimal for enhancing information coding in cortical neurons. In addition, we applied tetrodotoxin and 4-aminopyridine to partially block \(\hbox {Na}^{+}\) and \(\hbox {K}^{+}\) channels, respectively, and observed that a change in sodium or potassium conductance could also alter the neuronal response reliability of pyramidal neurons.


Pyramidal neuron Hodgkin–Huxley model Response reliability Coding efficiency Information transmission rate 



YY thanks for the support from the National Natural Science Foundation of China (81761128011, 31571070), the Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01) and ZJLab, the Shanghai Science and Technology Committee support (16410722600), and the program for the Professor of Special Appointment (Eastern Scholar SHH1140004) at Shanghai Institutions of Higher Learning.

Author Contributions

YY supervised the research, YY and XF designed the research, XF and YY performed the experimental study and data analysis, and XF and YY wrote the paper. All authors reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Human and animal statement

The conducts and procedures involving animal experiments in this study were approved by the Animal Ethics Committee of Fudan University School of Life Sciences.


  1. 1.
    Van Rossum, M.C., O’Brien, B.J., Smith, R.G.: Effects of noise on the spike timing precision of retinal ganglion cells. J. Neurophysiol. 89(5), 2406–2419 (2003)Google Scholar
  2. 2.
    Movshon, J.A.: Reliability of neuronal responses. Neuron 27(3), 412–414 (2000)Google Scholar
  3. 3.
    Cudmore, R.H., Fronzaroli-Molinieres, L., Giraud, P., Debanne, D.: Spike-time precision and network synchrony are controlled by the homeostatic regulation of the D-type potassium current. J. Neurosci. 30(38), 12885 (2010)Google Scholar
  4. 4.
    Mainen, Z.F., Sejnowski, T.J.: Reliability of spike timing in neocortical neurons. Science 268(5216), 1503–1506 (1995)Google Scholar
  5. 5.
    Mcadams, C.J., Maunsell, J.H.R.: Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron 23(4), 765–773 (1999)Google Scholar
  6. 6.
    Schneidman, E., Freedman, B., Segev, I.: Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput. 10(7), 1679–1703 (1998)Google Scholar
  7. 7.
    Yu, Y.G.: Constant warm body temperature ensures high response reliability of neurons in endothermic brains. Austin J. Comput. Biol. Bioinf. 1(1), 5 (2014)Google Scholar
  8. 8.
    Ermentrout, G.B., Galán, R.F., Urban, N.N.: Reliability, synchrony and noise. Trends Neurosci. 31(8), 428–434 (2008)Google Scholar
  9. 9.
    Thiele, A., Herrero, J.L., Distler, C., Hoffmann, K.P.: Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area. J. Neurosci. 32(47), 16602 (2012)Google Scholar
  10. 10.
    Guo, D.Q., Perc, M., Liu, T.J., Yao, D.Z.: Functional importance of noise in neuronal information processing. Europhys. Lett. 124(5), 50001 (2018)Google Scholar
  11. 11.
    Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223 (1998)Google Scholar
  12. 12.
    Yu, Y.G., Wang, W., Wang, J.F., Liu, F.: Resonance-enhanced signal detection and transduction in the Hodgkin–Huxley neuronal systems. Phys. Rev. E 63(2), 12 (2001)Google Scholar
  13. 13.
    Fellous, J., Houweling, A., Modi, R., Rao, R., Tiesinga, P., Sejnowski, T.: Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. J. Neurophysiol. 85(4), 1782–1787 (2001)Google Scholar
  14. 14.
    Yu, Y.G., Liu, F., Wang, J., Wang, W.: Spike timing precision for a neuronal array with periodic signal. Phys. Lett. A 282(1–2), 23–30 (2001)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Zhu, Y.J., Qiao, W.H., Liu, K.F., Zhong, H.Y., Yao, H.S.: Control of response reliability by parvalbumin-expressing interneurons in visual cortex. Nat. Commun. 6(1), 6802–6802 (2014)Google Scholar
  16. 16.
    Guo, D.Q., Chen, M.M., Perc, M., Wu, S.D., Xia, C., Zhang, Y.S., Xu, P., Xia, Y., Yao, D.Z.: Firing regulation of fast-spiking interneurons by autaptic inhibition. Europhys. Lett. 114(3), 30001 (2016)Google Scholar
  17. 17.
    Guo, D.Q., Wu, S.D., Chen, M.M., Perc, M., Zhang, Y.S., Ma, J.L., Cui, Y., Xu, P., Xia, Y., Yao, D.Z.: Regulation of irregular neuronal firing by autaptic transmission. Sci. Rep. 6, 26096 (2016)Google Scholar
  18. 18.
    Gosak, M., Markovič, R., Dolenšek, J., Rupnik, M.S., Marhl, M., Stožer, A., Perc, M.: Network science of biological systems at different scales: a review. Phys. Life Rev. 24, 118–135 (2018)zbMATHGoogle Scholar
  19. 19.
    Bera, B.K., Majhi, S., Ghosh, D., Perc, M.: Chimera states: effects of different coupling topologies. Europhys. Lett. 118(1), 10001 (2017)Google Scholar
  20. 20.
    Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2018)Google Scholar
  21. 21.
    Yu, Y.G., Liu, F., Wang, W., Lee, T.S.: Optimal synchrony state for maximal information transmission. Neuroreport 15(10), 1605–1610 (2004)Google Scholar
  22. 22.
    Reig, R., Mattia, M., Compte, A., Belmonte, C., Sánchez-Vives, M.V.: Temperature modulation of slow and fast cortical rhythms. J. Neurophysiol. 103(3), 1253–1261 (2009)Google Scholar
  23. 23.
    Hedrick, T., Waters, J.: Spiking patterns of neocortical L5 pyramidal neurons in vitro change with temperature. Front. Cell. Neurosci. 5(3), 1 (2011)Google Scholar
  24. 24.
    Andersen, P., Moser, E.I.: Brain temperature and hippocampal function. Hippocampus 5(6), 491–498 (1995)Google Scholar
  25. 25.
    Jerison, H.J.: Paleoneurology and the evolution of mind. Sci. Am. 234(1), 90–101 (1976)Google Scholar
  26. 26.
    Hamilton, C.L., Ciaccia, P.J.: Hypothalamus, temperature regulation, and feeding in the rat. Am. J. Physiol. Leg. Content 221(3), 800–807 (1971)Google Scholar
  27. 27.
    Zhao, Z.D., Yang, W.Z., Gao, C.C., Fu, X., Zhang, W., Zhou, Q., Chen, W.P., Ni, X.Y., Lin, J.K., Yang, J.: A hypothalamic circuit that controls body temperature. Proc. Natl. Acad. Sci. 114(8), 2042–2047 (2017)Google Scholar
  28. 28.
    Wang, Y.Y., Qin, J., Han, Y., Cai, J., Xing, G.G.: Hyperthermia induces epileptiform discharges in cultured rat cortical neurons. Brain Res. 1417(15), 87–102 (2011)Google Scholar
  29. 29.
    Simon, H.B.: Hyperthermia. N. Engl. J. Med. 329(7), 483 (1993)Google Scholar
  30. 30.
    Erecinska, M., Thoresen, M., Silver, I.A.: Effects of hypothermia on energy metabolism in Mammalian central nervous system. J. Cereb. Blood Flow Metab. 23(5), 513–530 (2003)Google Scholar
  31. 31.
    Orlowski, J.P., Erenberg, G., Lueders, H., Cruse, R.P.: Hypothermia and barbiturate coma for refractory status epilepticus. Crit. Care Med. 12(4), 367–372 (1984)Google Scholar
  32. 32.
    Arendt, T., Stieler, J., Holzer, M.: Brain hypometabolism triggers PHF-like phosphorylation of tau, a major hallmark of Alzheimer’s disease pathology. J. Neural Transm. (Vienna) 122(4), 531–539 (2015)Google Scholar
  33. 33.
    Kim, J., Connors, B.: High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus. Front. Cell. Neurosci. 6(10), 27 (2012)Google Scholar
  34. 34.
    Ye, M.Y., Yang, J., Tian, C.P., Zhu, Q.Y., Yin, L.P., Jiang, S., Yang, M.P., Shu, Y.S.: Differential roles of NaV 1.2 and NaV 1.6 in regulating neuronal excitability at febrile temperature and distinct contributions to febrile seizures. Sci. Rep. 8(1), 753 (2018)Google Scholar
  35. 35.
    Yu, Y.G., Hill, A.P., Mccormick, D.A.: Warm body temperature facilitates energy efficient cortical action potentials. PLoS Comput. Biol. 8(4), e1002456 (2012)Google Scholar
  36. 36.
    Thompson, S.M., Masukawa, L.M., Prince, D.A.: Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J. Neurosci. 5(3), 817–824 (1985)Google Scholar
  37. 37.
    Volgushev, M., Kudryashov, I., Chistiakova, M., Mukovski, M., Niesmann, J., Eysel, U.T.: Probability of transmitter release at neocortical synapses at different temperatures. J. Neurophysiol. 92(1), 212–220 (2004)Google Scholar
  38. 38.
    Dinkelacker, V., Voets, T., Neher, E., Moser, T.: The readily releasable pool of vesicles in chromaffin cells is replenished in a temperature-dependent manner and transiently overfills at 37 C. J. Neurosci. 20(22), 8377–8383 (2000)Google Scholar
  39. 39.
    Hardingham, N.R., Larkman, A.U.: The reliability of excitatory synaptic transmission in slices of rat visual cortex in vitro is temperature dependent. J. Physiol. 507(1), 249–256 (1998)Google Scholar
  40. 40.
    Yu, Y.G., Shu, Y.S., McCormick, D.A.: Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J. Neurosci. 28(29), 7260–7272 (2008)Google Scholar
  41. 41.
    McCormick, D.A., Huguenard, J.R.: A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68(4), 1384–1400 (1992)Google Scholar
  42. 42.
    Strong, S.P., Koberle, R., Steveninck, R.R.D.R.V., Bialek, W.: Entropy and information in neural spike trains. Phys. Rev. Lett. 80(1), 197–200 (1996)Google Scholar
  43. 43.
    Haider, B., Duque, A., Hasenstaub, A.R., Mccormick, D.A.: Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26(17), 4535 (2006)Google Scholar
  44. 44.
    Isaacson, J.S., Scanziani, M.: How inhibition shapes cortical activity. Neuron 72(2), 231–243 (2011)Google Scholar
  45. 45.
    Priebe, N.J., Ferster, D.: Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45(1), 133–145 (2005)Google Scholar
  46. 46.
    Bennett, C., Arroyo, S., Hestrin, S.: Subthreshold mechanisms underlying state-dependent modulation of visual responses. Neuron 80(2), 350–357 (2013)Google Scholar
  47. 47.
    Wang, L.F., Jia, F., Liu, X.Z., Song, Y., Yu, L.C.: Temperature effects on information capacity and energy efficiency of Hodgkin–Huxley neuron. Chin. Phys. Lett. 32(10), 108701 (2015)Google Scholar
  48. 48.
    Gewaltig, M.O., Diesmann, M., Aertsen, A.: Propagation of cortical synfire activity: survival probability in single trials and stability in the mean. Neural Netw. 14(6–7), 657–673 (2001)Google Scholar
  49. 49.
    Reyes, A.D.: Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat. Neurosci. 6(6), 593–599 (2003)Google Scholar
  50. 50.
    Haider, B., Häusser, M., Carandini, M.: Inhibition dominates sensory responses in the awake cortex. Nature 493(7430), 97 (2013)Google Scholar
  51. 51.
    Mittmann, W., Koch, U., Häusser, M.: Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J. Physiol. 563(2), 369–378 (2005)Google Scholar
  52. 52.
    Higley, M.J., Contreras, D.: Balanced excitation and inhibition determine spike timing during frequency adaptation. J. Neurosci. 26(2), 448–457 (2006)Google Scholar
  53. 53.
    Schreiber, S., Fellous, J.-M., Tiesinga, P., Sejnowski, T.J.: Influence of ionic conductances on spike timing reliability of cortical neurons for suprathreshold rhythmic inputs. J. Neurophysiol. 91(1), 194–205 (2004)Google Scholar
  54. 54.
    Dube, C.M., Brewster, A.L., Baram, T.Z.: Febrile seizures: mechanisms and relationship to epilepsy. Brain Dev. 31(5), 366–371 (2009)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of BiosciencesFudan UniversityShanghaiChina
  2. 2.State Key Laboratory of Medical Neurobiology, School of Life Science and Human Phenome Institute, Institutes of Brain Science, Institute of Science and Technology for Brain-Inspired IntelligenceFudan UniversityShanghaiChina

Personalised recommendations