Advertisement

Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method

  • Yun-Chi Chung
  • Yu-Ren WuEmail author
Original paper
  • 26 Downloads

Abstract

The reduction in vibration in gear transmission systems is an engineering task. Particle damping technology attenuates vibration by means of friction and inelastic collisions between damping particles. This study proposes a dynamic model for a spur gear transmission system that contains damping particles inside the holes on gear bodies, using two-way coupling with multi-body dynamics and discrete element method. The equations of motion for the multi-body system are derived using Euler–Lagrange formalism. The discrete element method with a soft contact approach is used to model the dynamic behavior of damping particles. Hertzian contact theory and Coulomb friction theory are applied to modeling contacts. The effects of particle radius, coefficient of friction and restitution coefficient on the dynamic characteristics are explored. Numerical results show that vibration in the transmission is appreciably attenuated by the particle damping mechanism and that the contact friction, and not contact damping, dominates the energy dissipation of the multi-body system in such a centrifugal scenario.

Keywords

Gear transmission Damping particles Coupled MBD–DEM method Dynamic characteristics 

Notes

Acknowledgements

The authors are very grateful to the ministry of science and technology (MOST) of Taiwan for financial support under Project Numbers: MOST 107-2221-E-008-052-MY2 and MOST 105-2221-E-008-048-MY2. The authors also greatly appreciate the valuable discussion with Professor W. Q. Xiao at Xiamen University in China and the technical support of Professor C. K. Lin at National Central University in Taiwan.

Funding

The study was funded by the ministry of science and technology (MOST) of Taiwan (Grant Numbers: 105-2221-E-008-048-MY2 and 107-2221-E-008-052-MY2). The authors also greatly appreciate the valuable discussion with Professor W. Q. Xiao at Xiamen University in China and the technical support of Professor C. K. Lin at National Central University in Taiwan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Velex, P.: On the modelling of spur and helical gear dynamic behaviour. Mech. Eng. 75–106. ISBN: 978-953-51-0505-3, (2012)Google Scholar
  2. 2.
    Fernandez del Rincon, A., Viadero, F., Iglesias, M., Garcia, P., de-Juan, A., Sancibrian, R.: A model for the study of meshing stiffness in spur gear transmissions. Mech. Mach. Theory 61, 30–58 (2013)CrossRefGoogle Scholar
  3. 3.
    Ma, H., Li, Z.W., Feng, M.J., Feng, R.J., Wen, B.C.: Time-varying mesh stiffness calculation of spur gears with spalling defect. Eng. Fail. Anal. 66, 166–176 (2016)CrossRefGoogle Scholar
  4. 4.
    Sánchez, M.B., Pleguezuelos, M., Pedrero, J.I.: Approximate equations for the meshing stiffness and the load sharing ratio of spur gears including Hertzian effects. Mech. Mach. Theory 109, 231–249 (2017)CrossRefGoogle Scholar
  5. 5.
    Xu, Z., Wang, M.Y., Chen, T.: An experimental study of particle damping for beams and plates. J. Vib. Acoust 1 26(1), 141–148 (2004)CrossRefGoogle Scholar
  6. 6.
    Lu, Z., Lu, X.L., Masri, S.F.: Studies of the performance of particle dampers under dynamic loads. J. Sound Vib. 329(26), 5415–5433 (2010)CrossRefGoogle Scholar
  7. 7.
    Lu, Z., Lu, X., Lu, W., Masri, S.F.: Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads. J. Sound Vib. 331, 2007–2022 (2012)CrossRefGoogle Scholar
  8. 8.
    Moore, J.J., Palazzolo, A.B., Gadangi, R., Nale, T.A., Klusman, S.A., Brown, G.V., Kascak, A.F.: A forced response analysis and application of impact dampers to rotor dynamic vibration suppression in a cryogenic environment. J. Vib. Acoust. 117, 300 (1995)CrossRefGoogle Scholar
  9. 9.
    Wong, C.X., Daniel, M.C., Rongong, J.A.: Energy dissipation prediction of particle dampers. J Sound Vib. 319(1–2), 91–118 (2009)CrossRefGoogle Scholar
  10. 10.
    Yao, B., Chen, Q.: Investigation on zero-gravity behavior of particle dampers. J. Vib. Control 21, 124–133 (2013)CrossRefGoogle Scholar
  11. 11.
    Ahmad, N., Ranganath, R., Ghosal, A.: Modeling and experimental study of a honeycomb beam filled with damping particles. J. Sound Vib. 391, 20–34 (2017)CrossRefGoogle Scholar
  12. 12.
    Xiao, W.Q., Huang, Y.X., Jiang, H., Lin, H., Li, J.N.: Energy dissipation mechanism and experiment of particle dampers for gear transmission under centrifugal loads. Particuology 27, 40–50 (2016)CrossRefGoogle Scholar
  13. 13.
    Xiao, W.Q., Li, J.N.: Investigation into the influence of particles’ friction coefficient on vibration suppression in gear transmission. Mech. Mach. Theory 108, 217–230 (2017)CrossRefGoogle Scholar
  14. 14.
    MSC.Software: Using ADAMS/Solver. Mechanical Dynamics, Inc., Ann Arbor, Michigan (1997)Google Scholar
  15. 15.
    McConville, J.B., McGrath, J.F.: Introduction to ADAMS Theory. Mechanical Dynamics Inc., Michigan (1998)Google Scholar
  16. 16.
    Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Schiehlen, W.: Computational dynamics: theory and applications of multibody systems. Eur. J. Mech. A/Solids 25(4), 566–594 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints. Springer, Berlin (2008)zbMATHGoogle Scholar
  19. 19.
    Xu, L.X.: An approach for calculating the dynamic load of deep groove ball bearing joints in planar multibody systems. Nonlinear Dyn. 70, 2145–2161 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Langerholc, M., Cesnik, M., Slavic, J., Boltear, M.: Experimental validation of a complex, large-scale, rigid-body mechanism. Eng. Struct. 36, 220–227 (2012)CrossRefGoogle Scholar
  21. 21.
    Cundall, P.A., Strack, O.D.L.: Discrete numerical-model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  22. 22.
    Coetzee, C., Els, D., Dymond, G.: Discrete element parameter calibration and the modelling of dragline bucket filling. J. Terramechanics 47, 33–44 (2010)CrossRefGoogle Scholar
  23. 23.
    Barrios, G.K., Tavares, L.M.: A preliminary model of high pressure roll grinding using the discrete element method and multibody dynamics coupling. Int. J. Miner. Process. 156, 32–42 (2016)CrossRefGoogle Scholar
  24. 24.
    Lommen, S., Lodewijks, G., Schott, D.L.: Co-simulation framework of discrete element method and multibody dynamics models. Eng. Comput. 35(3), 1481–1499 (2018)CrossRefGoogle Scholar
  25. 25.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefzbMATHGoogle Scholar
  26. 26.
    Coulomb, P.C.A.: Theorie des Machines Simples. Bachelier, Paris (1821)Google Scholar
  27. 27.
    Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des.-T. ASME 112(3), 369–376 (1990)CrossRefGoogle Scholar
  28. 28.
    McDevitt, T.: Treatment of frictional contact problems in MSC.ADAMS. In: Proceedings of 2002 North American MSC.ADAMS Users Conference. Scottsdale, AZ (2002)Google Scholar
  29. 29.
    Radzevich, S.P.: Dudley’s Handbook of Practical Gear Design and Manufacture, 3rd edn. CRC Press, New York (2016)CrossRefGoogle Scholar
  30. 30.
    International Standard BS ISO 6336-1: Calculation of Load Capacity of Spur and Helical Gears-Part I: Basic Principles, Introduction and Influence Factors. 70 (2006)Google Scholar
  31. 31.
    Lin, H.H., Liou, C.H.: A parametric study of spur gear dynamics. NASA CR-1998-206598 (1998)Google Scholar
  32. 32.
    EL-Sayed, H.R.: Stiffness of deep-groove ball bearings. Wear 63, 89–94 (1980)CrossRefGoogle Scholar
  33. 33.
    Friswell, M.I., Penny, J.E.T., Garvey, S.D., Lees, A.W.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  34. 34.
    Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016)CrossRefzbMATHGoogle Scholar
  35. 35.
    Geonea, I., Dumitru, N., Dumitru, I.: Experimental and theoretical study of friction torque from radial ball bearings. IOP Conf. Ser.: Mater. Sci. Eng. 252, 012048 (2017)CrossRefGoogle Scholar
  36. 36.
    Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)CrossRefGoogle Scholar
  37. 37.
    Chung, Y.C., Wu, C.W., Kuo, C.Y., Hsiau, S.S.: A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress. Appl. Math. Model. 74, 540–568 (2019)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Chung, Y.C., Ooi, J.Y.: Benchmark tests for verifying discrete element modelling codes at particle impact level. Granul. Matter 13, 643–656 (2011)CrossRefGoogle Scholar
  39. 39.
    Baumgarte, J.: Stabilization of constraints and integral of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lin, S.T., Huang, J.N.: Stabilization of Baumgarte’s method using the Runge–Kutta approach. J. Appl. Mech.-T. ASME 124, 633–641 (2002)CrossRefGoogle Scholar
  41. 41.
    Thornton, C., Randall, C.W.: Applications of theoretical contact mechanics to solid particle system simulation. In: Satake, M., Jenkins, J.T. (eds.) Micromechanics of Granular Materials, pp. 133–142. Elsevier, Amsterdam (1988)Google Scholar
  42. 42.
    Chou, H.T., Lee, C.F., Chung, Y.C., Hsiau, S.S.: Discrete element modelling and experimental validation for the falling process of dry granular steps. Powder Technol. 231, 122–134 (2012)Google Scholar
  43. 43.
    Chung, Y.C., Liao, H.H., Hsiau, S.S.: Convection behavior of non-spherical particles in a vibrating bed: discrete element modeling and experimental validation. Powder Technol. 237, 53–66 (2013)CrossRefGoogle Scholar
  44. 44.
    Chung, Y.C., Lin, C.K., Chou, P.H., Hsiau, S.S.: Mechanical behavior of a granular solid and its contacting deformable structure under uni-axial compression-Part I: joint DEM-FEM modelling and experimental validation. Chem. Eng. Sci. 144, 404–420 (2016)CrossRefGoogle Scholar
  45. 45.
    SKF: General Catalogue. SKF Group, 287–404 (2003)Google Scholar
  46. 46.
    Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Central UniversityJungli City, TaoyuanTaiwan, ROC

Personalised recommendations