Advertisement

Mobility of machine-process systems

  • Friedrich PfeifferEmail author
Original paper
  • 5 Downloads

Abstract

A machine-process combination may be seen as two dynamic systems cooperating for the realization of some process. A well-known example is the projection of arbitrary many robot degrees of freedom on a given path resulting in a set of nonlinear equations with one degree of freedom only, for example the path coordinate s. The set with the complete number of robot degrees of freedom is used to construct a mobility space \((\ddot{s}, \dot{s}, s)\) for any combination of coordinates and constraints. The paper presents a corresponding approach for more general machine and process configurations applying multibody system theory put in Lagrange I that form together with transformations from the machine side to the process side and vice versa. Practical aspects are discussed and examples given.

Keywords

Multibody systems Nonlinear system dynamics Projection methods Motion spaces Nonlinear dynamics 

Notes

Compliance with ethical standards

Conflict of interest

The author confirms that there are no potential conflict of interest.

Human and animal rights statement

No research involving human beings or animals.

Informed consent

The author consents to the ethical rules as given by the editors.

References

  1. 1.
    Abraham, R., Marsden, J.E.: Foundations of Mechanics. Westview, Perseus Books Group, Cambridge, MA (1978)zbMATHGoogle Scholar
  2. 2.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics, (2)th edn. Springer, New York (1989)CrossRefGoogle Scholar
  4. 4.
    Bobrow, J.E., Dubowsky, S., Gibson, J.S.: Time optimal control of robotic manipulators along specified paths. Int. J. Robot. Res. 4, 3–17 (1985)CrossRefGoogle Scholar
  5. 5.
    Bremer, H.: Elastic Multibody Dynamics. Springer, Dordrecht (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dresig, H., Vul’fson, I.I.: Dynamik der Mechanismen. Springer, Wien (1989)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dubowsky, S., Shiller, Z.: Optimal dynamic trajectories for robotic manipulators. In: Proceedings of 5th Symposium on Theory and Practice of Robotics and Manipulators (1985)Google Scholar
  8. 8.
    Duschek, A., Hochrainer, A.: Grundzüge der Tensorrechnung in analytischer Darstellung. Springer, Wien (1960)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hoschek, J.: Liniengeometrie. B. I. Hochschulskripten, Bibliographisches Institut Zürich (1971)Google Scholar
  10. 10.
    Jacobi, C.G.J.: Vorlesungen über Dynamik. In: Clebsch, A. (ed.) Georg Reimer, Berlin (1866)Google Scholar
  11. 11.
    Johanni, R.: Optimale Bahnplanung bei Robotern, Fortschritt-Berchte VDI, Reihe 18, Nr. 51, VDI-Verlag Düsseldorf (1988)Google Scholar
  12. 12.
    Nolte, D.D.: Introduction to Modern Dynamics. Oxford University Press, Oxford (2015)zbMATHGoogle Scholar
  13. 13.
    Pfeiffer, F.: Optimal Trajectory Planning for Manipulators. Systems and Control Encyclopedia. Pergamon Press, Oxford (1990)Google Scholar
  14. 14.
    Pfeiffer, F.: Mechanical System Dynamics. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Pfeiffer, F., Schindler, Th: Introduction to Dynamics. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  16. 16.
    Rajeev, S.G.: Advanced Mechanics. Oxford University Press, Oxford (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Richter, K.: Kraftregelung elastischer Roboter. Fortschritt-Berichte VDI, Reihe 8, Nr. 259, VDI-Verlag Düsseldorf (1991)Google Scholar
  18. 18.
    Wittenburg, J.: Kinematics. Springer, Heidelberg (2016)CrossRefzbMATHGoogle Scholar
  19. 19.
    Woernle, C.: Mehrkörpersysteme. Springer, Berlin (2016). 2. AuflageCrossRefGoogle Scholar
  20. 20.
    Zeidler, E., Schwarz, R., Hackbusch, W.: Teubner-Taschenbuch der Mathematik. Teubner Verlag, Wiesbaden (2003)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Lehrstuhl fuer Angewandte MechanikTU-MuenchenGarchingGermany

Personalised recommendations