Advertisement

Nonlinear Dynamics

, Volume 98, Issue 3, pp 1603–1613 | Cite as

Cooperative disturbance rejection control of vibrating flexible riser systems

  • Zhijia ZhaoEmail author
  • Choon Ki AhnEmail author
  • Guilin Wen
Original paper

Abstract

In this paper, we concentrate on the cooperative disturbance rejection control of flexible riser systems corrupted by external disturbances. Fusing with disturbance rejection control strategy, auxiliary system, and Lyapunov theory, new controllers and disturbance observers are established to dampen the vibration and eliminate the effects of external disturbances. Considering all system states, the uniformly bounded stability of the considered system and the effectiveness of the proposed control scheme are realized through rigorous theoretical analysis. Further, the control performance is verified via numerical simulations by choosing the proper control gains.

Keywords

Flexible risers Vibration control Disturbance rejection Distributed control Boundary control 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61803109, 11832009, and 61803111, in part by the Innovative School Project of Education Department of Guangdong under Grants 2017KQNCX153, 2018KQNCX192, and 2017KZDXM060, in part by the Science and Technology Planning Project of Guangzhou City under Grants 201904010494 and 201904010475, and in part by the National Research Foundation of Korea through the Ministry of Science, ICT and Future Planning under Grant NRF-2017R1A1A1A05001325.

References

  1. 1.
    Hong, K.-S., Shah, U.H.: Vortex-induced vibrations and control of marine risers: a review. Ocean Eng. 152, 300–315 (2018)Google Scholar
  2. 2.
    He, W., Ge, S.S., How, B.V.E., Choo, Y.S., Hong, K.-S.: Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4), 722–732 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    He, W., Nie, S.X., Meng, T., Liu, Y.J.: Modeling and vibration control for a moving beam with application in a drilling riser. IEEE Trans. Control Syst. Technol. 25(3), 1036–1043 (2017)Google Scholar
  4. 4.
    Liu, Y., Guo, F., Zhao, Z.J.: Boundary barrier-based control of a flexible riser system. IET Control Theory Appl. 11(7), 923–930 (2017)MathSciNetGoogle Scholar
  5. 5.
    He, W., Sun, C., Ge, S.S.: Top tension control of a flexible marine riser by using integral-barrier Lyapunov function. IEEE/ASME Trans. Mechatron. 20(2), 497–505 (2015)Google Scholar
  6. 6.
    Zhao, Z.J., Liu, Y., Guo, F.: Robust output feedback stabilization for a flexible marine riser system. ISA Trans. 78, 130–140 (2018)Google Scholar
  7. 7.
    Liu, Z.J., Liu, J.K., He, W.: Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica 77, 302–310 (2017)MathSciNetzbMATHGoogle Scholar
  8. 8.
    He, W., Zhang, S.: Control design for nonlinear flexible wings of a robotic aircraft. IEEE Trans. Control Syst. Technol. 25(1), 351–357 (2017)Google Scholar
  9. 9.
    He, X.Y., He, W., Shi, J., Sun, C.Y.: Boundary vibration control of variable length crane systems in two dimensional space with output constraints. IEEE/ASME Trans. Mechatron. 22(5), 1952–1962 (2017)Google Scholar
  10. 10.
    Liu, Z.J., Liu, J.K., He, W.: Robust adaptive fault tolerant control for a linear cascaded ode-beam system. Automatica 98, 42–50 (2018)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Zhao, Z.J., Wang, X.G., Zhang, C.L., Liu, Z.J., Yang, J.F.: Neural network based boundary control of a vibrating string system with input deadzone. Neurocomputing 275, 1021–1027 (2018)Google Scholar
  12. 12.
    Wang, J.-W., Liu, Y.Q., Sun, C.Y.: Adaptive neural boundary control design for nonlinear flexible distributed parameter systems. IEEE Trans. Control Syst. Technol. (2018).  https://doi.org/10.1109/TCST.2018.2849072 CrossRefGoogle Scholar
  13. 13.
    He, X.Y., He, W., Sun, C.Y.: Robust adaptive vibration control for an uncertain flexible timoshenko robotic manipulator with input and output constraints. Int. J. Syst. Sci. 48(13), 2860–2870 (2017)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1–2), 425–435 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lacarbonara, W., Carboni, B., Quaranta, G.: Nonlinear normal modes for damage detection. Meccanica 51(11), 2629–2645 (2016)MathSciNetGoogle Scholar
  16. 16.
    Wang, J.M., Liu, J.J., Ren, B.B., Chen, J.H.: Sliding mode control to stabilization of cascaded heat pde-ode systems subject to boundary control matched disturbance. Automatica 52, 23–34 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Zulli, D., Luongo, A.: Nonlinear energy sink to control vibrations of an internally nonresonant elastic string. Meccanica 50(3), 781–794 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Guo, B.-Z., Guo, W.: The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control. Automatica 45(3), 790–797 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Wu, H.-N., Wang, J.-W.: Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems. Automatica 50(11), 2787–2798 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Cai, X., Krstic, M.: Nonlinear stabilization through wave pde dynamics with a moving uncontrolled boundary. Automatica 68, 27–38 (2016)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ren, Y.Q., Duan, X.G., Li, H.X., Chen, C.L.P.: Dynamic switching based fuzzy control strategy for a class of distributed parameter system. J. Process Control 24(3), 88–97 (2014)Google Scholar
  22. 22.
    Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstepping Designs. Society for Industrial and Applied Mathematics, Philadelphia (2008)zbMATHGoogle Scholar
  23. 23.
    He, W., He, X., Zou, M., Li, H.: Pde model-based boundary control design for a flexible robotic manipulator with input backlash. IEEE Trans. Control Syst. Technol. 27(2), 790–797 (2019)Google Scholar
  24. 24.
    Liu, J., Wang, J.M.: Stabilization of one-dimensional wave equation with nonlinear boundary condition subject to boundary control matched disturbance. IEEE Trans. Autom. Control 64(7), 3068–3073 (2019)MathSciNetzbMATHGoogle Scholar
  25. 25.
    He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66(4), 146–154 (2016)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Endo, T., Matsuno, F., Jia, Y.M.: Boundary cooperative control by flexible timoshenko arms. Automatica 81, 377–389 (2017)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Endo, T., Sasaki, M., Matsuno, F.: Contact-force control of a flexible timoshenko arm. IEEE Trans. Autom. Control 62(2), 1004–1009 (2017)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Endo, T., Sasaki, M., Matsuno, F., Jia, Y.M.: Contact-force control of a flexible timoshenko arm in rigid/soft environment. IEEE Trans. Autom. Control 62(5), 2546–2553 (2017)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Qiu, J., Ding, S., Gao, H., Yin, S.: Fuzzy-model-based reliable static output feedback \(\text{ h }^{\infty }\) control of nonlinear hyperbolic PDE systems. IEEE Trans. Fuzzy Syst. 24(2), 388–400 (2016)Google Scholar
  30. 30.
    Saghir, S., Younis, M.I.: An investigation of the static and dynamic behavior of electrically actuated rectangular microplates. Int. J. Non-Linear Mech. 85, 81–93 (2016)Google Scholar
  31. 31.
    Qiu, J., Ding, S., Li, L., Yin, S.: Reliable fuzzy output feedback control of nonlinear parabolic distributed parameter systems with sensor faults. J. Intel. Fuzzy Syst. 29(3), 1197–1208 (2015)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Do, K.D., Pan, J.: Boundary control of transverse motion of marine risers with actuator dynamics. J. Sound Vib. 318(4–5), 768–791 (2008)Google Scholar
  33. 33.
    Do, K.D.: Stochastic boundary control design for extensible marine risers in three dimensional space. Automatica 77, 184–197 (2017)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Do, K.D.: Boundary control design for extensible marine risers in three dimensional space. J. Sound Vib. 388(3), 1–19 (2017)zbMATHGoogle Scholar
  35. 35.
    He, W., He, X.Y., Ge, S.S.: Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Trans. Mechatron. 21(1), 254–265 (2016)Google Scholar
  36. 36.
    Zhao, Z.J., He, X.Y., Wen, G.L.: Boundary robust adaptive anti-saturation control of vibrating flexible riser systems. Ocean Eng. 179, 298–306 (2019)Google Scholar
  37. 37.
    Zhao, Z.J., Lin, S.M., Zhu, D.C., Wen, G.L.: Vibration control of a riser-vessel system subject to input backlash and extraneous disturbances. IEEE Trans. Circuits Syst. II (2019).  https://doi.org/10.1109/TCSII.2019.2914061 CrossRefGoogle Scholar
  38. 38.
    Zhao, Z.J., He, X.Y., Ren, Z.G., Wen, G.L.: Boundary adaptive robust control of a flexible riser system with input nonlinearities. IEEE Trans. Syst. Man Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2018.2882734 CrossRefGoogle Scholar
  39. 39.
    Zhao, Z.J., Liu, Z.J., Li, Z.F., Wang, N., Yang, J.F.: Control design for a vibrating flexible marine riser system. J. Franklin Inst. 354(18), 8117–8133 (2017)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Guo, F., Liu, Y., Wu, Y.L., Luo, F.: Observer-based backstepping boundary control for a flexible riser system. Mech. Syst. Signal Process. 111, 314–330 (2018)Google Scholar
  41. 41.
    Zhao, Z.J., He, X.Y., Ahn, C.K.: Boundary disturbance observer-based control of a vibrating single-link flexible manipulator. IEEE Trans. Syst. Man Cybern. Syst. (2019).  https://doi.org/10.1109/TSMC.2019.2912900 CrossRefGoogle Scholar
  42. 42.
    Chen, M., Ren, Y., Liu, J.: Anti-disturbance control for a suspension cable system of helicopter subject to input nonlinearities. IEEE Trans. Syst. Man. Cybern. Syst. 48(12), 2292–2304 (2018)Google Scholar
  43. 43.
    Liu, Z.J., Zhao, Z.J., Ahn, C.K.: Boundary constrained control of flexible string systems subject to disturbances. IEEE Trans. Circuits Syst. II (2019).  https://doi.org/10.1109/TCSII.2019.2901283 CrossRefGoogle Scholar
  44. 44.
    Wu, Z., Guo, B.: Active disturbance rejection control to mimo nonlinear systems with stochastic uncertainties: approximate decoupling and output-feedback stabilisation. Int. J. Control (2018).  https://doi.org/10.1080/00207179.2018.1508854 CrossRefGoogle Scholar
  45. 45.
    Chen, M., Tao, G.: Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Trans. Cybern. 47(10), 3110–3123 (2017)MathSciNetGoogle Scholar
  46. 46.
    Wu, Z., Guo, B.: Approximate decoupling and output tracking for mimo nonlinear systems with mismatched uncertainties via adrc approach. J. Franklin Inst. 355, 3873–3894 (2018)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Zhao, Z.J., Shi, J., Lan, X.J., Wang, X.W., Yang, J.F.: Adaptive neural network control of a flexible string system with non-symmetric dead-zone and output constraint. Neurocomputing 283, 1–8 (2018)Google Scholar
  48. 48.
    Zhao, Z.J., He, X.Y., Ren, Z.G., Wen, G.L.: Output feedback stabilization for an axially moving system. IEEE Trans. Syst. Man Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2018.2882822 CrossRefGoogle Scholar
  49. 49.
    He, W., Zhang, S.: Control design for nonlinear flexible wings of a robotic aircraft. IEEE Trans. Control Syst. Technol. 25(1), 23–24 (2017)Google Scholar
  50. 50.
    He, W., Meng, T.T., Huang, D.Q., Li, X.F.: Adaptive boundary iterative learning control for an Euler–Bernoulli beam system with input constraint. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1524–1535 (2018)MathSciNetGoogle Scholar
  51. 51.
    He, W., Meng, T.T., He, X.Y., Sun, C.Y.: Iterative learning control for a flapping wing micro aerial vehicle under distributed disturbances. IEEE Trans. Cybern. 49(4), 1524–1535 (2019)Google Scholar
  52. 52.
    Chen, M., Tao, G.: Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead-zone. IEEE Trans. Cybern. 46(8), 1851–1862 (2016)Google Scholar
  53. 53.
    Zhang, T., Su, G., Qing, C., Xu, X., Cai, B., Xing, X.: Hierarchical lifelong learning by sharing representations and integrating hypothesis. IEEE Trans. Syst. Man Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2018.2884996 CrossRefGoogle Scholar
  54. 54.
    Sun, N., Liang, D.K., Wu, Y.M., Chen, Y.H., Qin, Y.D., Fang, Y.C.: Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints. IEEE Trans. Ind. Inf. (2019).  https://doi.org/10.1109/TII.2019.2923715 CrossRefGoogle Scholar
  55. 55.
    Dai, S.L., Wang, C., Wang, M.: Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 111–123 (2014)Google Scholar
  56. 56.
    Wang, Y.Y., Karimi, H.R., Shen, H., Fang, Z.J., Liu, M.X.: Fuzzy-model-based sliding mode control of nonlinear descriptor systems. IEEE Trans. Cybern. 49(9), 3409–3419 (2019)Google Scholar
  57. 57.
    Niu, B., Liu, Y.J., Zhou, W.L., Li, H.T., Duan, P.Y., Li, J.Q.: Multiple lyapunov functions for adaptive neural tracking control of switched nonlinear non-lower-triangular systems. IEEE Trans. Cybern. (2019).  https://doi.org/10.1109/TCYB.2019.2906372 CrossRefGoogle Scholar
  58. 58.
    Li, H.Y., Zhao, S.Y., He, W., Lu, R.Q.: Adaptive finite-time tracking control of full states constrained nonlinear systems with dead-zone. Automatica 100, 99–107 (2019)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Wu, Z., Liu, S., Ding, C., Ren, Z., Xie, S.: Learning graph similarity with large spectral gap. IEEE Trans. Syst. Man Cybern. Syst. (2019).  https://doi.org/10.1109/TSMC.2019.2899398 CrossRefGoogle Scholar
  60. 60.
    Hussain, M., Rehan, M., Ahn, C.K., Zheng, Z.W.: Static anti-windup compensator design for nonlinear time-delay systems subjected to input saturation. Nonlinear Dyn. 95(3), 1879–1901 (2019)Google Scholar
  61. 61.
    Liu, Y.J., Lu, S.M., Tong, S.C., Chen, X.K., Chen, C.L.P., Li, D.J.: Adaptive control-based barrier lyapunov functions for a class of stochastic nonlinear systems with full state constraints. Automatica 87, 83–93 (2018)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Yang, T., Sun, N., Chen, H., Fang, Y.C.: Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Trans. Neural Netw. Learn. Syst. (2019).  https://doi.org/10.1109/TNNLS.2019.2910580 CrossRefGoogle Scholar
  63. 63.
    Zhang, S., Dong, Y.T., Ouyang, Y.C., Yin, Z., Peng, K.X.: Adaptive neural control for robotic manipulators with output constraints and uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5554–5564 (2018)MathSciNetGoogle Scholar
  64. 64.
    Yang, C.G., Jiang, Y.M., Na, J., Li, Z.J., Xu, B.: Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans. Ind. Electron. 65(10), 8112–8123 (2018)Google Scholar
  65. 65.
    Zhang, T., Chen, C.L.P., Chen, L., Xu, X., Hu, B.: Design of highly nonlinear substitution boxes based on i-ching operators. IEEE Trans. Cybern. 48(12), 3349–3358 (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringGuangzhou UniversityGuangzhouChina
  2. 2.Advanced Technology Center for Special EquipmentGuangzhou UniversityGuangzhouChina
  3. 3.School of Electrical EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations