Advertisement

Nonlinear Dynamics

, Volume 98, Issue 4, pp 2737–2753 | Cite as

On the compact wave dynamics of tensegrity beams in multiple dimensions

  • Andrea Micheletti
  • Giuseppe Ruscica
  • Fernando FraternaliEmail author
Original Paper

Abstract

This work presents a numerical investigation on the nonlinear wave dynamics of tensegrity beams in 1D, 2D, and 3D arrangements. The simulation of impact loading on a chain of tensegrity prisms and lumped masses allows us to apply on a smaller scale recent results on the propagation of compression solitary waves in 1D tensegrity metamaterials. Novel results on the wave dynamics of 2D and 3D beams reveal—for the first time—the presence of compact compression waves in two- and three-dimensional tensegrity lattices with slender aspect ratio and stiffening-type elastic response. The dynamics of such systems is characterized by the thermalization of the lattice nearby the impacted regions of the boundary. The portion of the absorbed energy moving along the longitudinal direction is transported by compression waves with compact support. Such waves emerge with nearly constant speed, and slight modifications of their spatial shape and amplitude, after collisions with compression waves traveling in opposite direction. The analyzed behaviors suggest the use of multidimensional tensegrity lattices for the design and additive manufacturing of novel sound focusing devices.

Keywords

Tensegrity lattices Stiffening Solitary waves Compactons Sound focusing 

Notes

Acknowledgements

AM and GR gratefully acknowledge the financial support from the Italian Ministry of Education, University, and Research (MIUR) under the ‘FFABR’ Grant L.232/2016. FF gratefully acknowledges financial support from the Italian Ministry of Education, University, and Research (MIUR) under the ‘Departments of Excellence’ Grant L.232/2016.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (mp4 20114 KB)

Supplementary material 2 (mp4 6365 KB)

Supplementary material 3 (mp4 21856 KB)

Supplementary material 4 (mp4 19742 KB)

Supplementary material 5 (mp4 15133 KB)

Supplementary material 6 (mp4 23705 KB)

Supplementary material 7 (mp4 23323 KB)

Supplementary material 8 (mp4 15495 KB)

References

  1. 1.
    Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)Google Scholar
  2. 2.
    Lu, M.H., Feng, L., Chen, Y.F.: Phononic crystals and acoustic metamaterials. Mater. Today 12, 34–42 (2009)Google Scholar
  3. 3.
    Maldovan, M.: Sound and heat revolution in phononics. Nature 503, 209–217 (2013)Google Scholar
  4. 4.
    Brunet, T., Leng, J., Mondain-Monva, O.: Soft acoustic metamaterials. Science 342, 323–324 (2013)Google Scholar
  5. 5.
    Friesecke, G., Pego, R.: Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit. Nonlinearity 12, 1601–1627 (1999)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Friesecke, G., Matthies, K.: Atomic-scale localization of high-energy solitary waves on lattices. Physica D 171, 211–220 (2002)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Theocharis, G., Boechler, N., Daraio, C.: Nonlinear phononic structures and metamaterials. In: Deymier, P.A. (ed.) Acoustic Metamaterials and Phononic Crystals. Springer Series in Solid State Sciences, vol. 173. Springer, Berlin (2013)Google Scholar
  8. 8.
    Meza, L.R., Das, S., Greer, J.R.: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345(6202), 1322–1326 (2014)Google Scholar
  9. 9.
    Zheng, X., et al.: Ultralight, ultrastiff mechanical metamaterials. Science 344, 6190 (2014)Google Scholar
  10. 10.
    Christensen, J., Kadic, M., Kraft, O., Wegener, M.: Vibrant times for mechanical metamaterials. MRS Commun. 5(3), 453–462 (2015)Google Scholar
  11. 11.
    Cummer, S.A., Christensen, J., Alu, A.: Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016)Google Scholar
  12. 12.
    Phani, A.S., Hussein, M.T. (eds.): Dynamics of Lattice Materials. Wiley, Chichester (2017)Google Scholar
  13. 13.
    Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. Trans. ASME 132(3), 0310011–03100111 (2010)Google Scholar
  14. 14.
    Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66(4), 040802 (2014)Google Scholar
  15. 15.
    Bertoldi, K., Vitelli, V., Christensen, J., Van Hecke, M.: Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017)Google Scholar
  16. 16.
    Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)Google Scholar
  17. 17.
    Herbold, E.B., Nesterenko, V.F.: Propagation of rarefaction pulses in discrete materials with strain-softening behavior. Phys. Rev. Lett. 110, 144101 (2012)Google Scholar
  18. 18.
    Rosenau, P.: Dynamics of dense lattices. Phys. Rev. B 36(11), 5868–5876 (1987)MathSciNetGoogle Scholar
  19. 19.
    Rosenau, P.: WHAT IS... a compacton? Not. Am. Math. Soc. 52(7), 738–739 (2005)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Zhang, T., Li, J.: Exact solitons, periodic peakons and compactons in an optical soliton model. Nonlinear Dyn. 91(2), 1371–1381 (2018)zbMATHGoogle Scholar
  21. 21.
    Dang, Y.L., Li, H.J., Lin, J.: Soliton solutions in nonlocal nonlinear coupler. Nonlinear Dyn. 88(1), 489–501 (2017)Google Scholar
  22. 22.
    Ma, L., Li, H., Ma, J.: Single-peak solitary wave solutions for the generalized Korteweg–de vries equation. Nonlinear Dyn. 79(1), 349–357 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Guo, D., Tian, S.T., Zhang, T.T., Li, J.: Modulation instability analysis and soliton solutions of an integrable coupled nonlinear schrödinger system. Nonlinear Dyn. 94(4), 2749–2761 (2018)Google Scholar
  24. 24.
    Sun, H.Q., Chen, A.H.: Interactional solutions of a lump and a solitary wave for two higher-dimensional equations. Nonlinear Dyn. 94(3), 1753–1762 (2018)Google Scholar
  25. 25.
    Fraternali, F., Senatore, L., Daraio, C.: Solitary waves on tensegrity lattices. J. Mech. Phys. Solids 60, 1137–1144 (2012)Google Scholar
  26. 26.
    Fraternali, F., Carpentieri, G., Amendola, A., Skelton, R.E., Nesterenko, V.F.: Multiscale tunability of solitary wave dynamics in tensegrity metamaterials. Appl. Phys. Lett. 105, 201903 (2014)Google Scholar
  27. 27.
    Davini, C., Micheletti, A., Podio-Guidugli, P.: On the impulsive dynamics of T3 tensegrity chains. Meccanica 51(11), 2763–2776 (2016)MathSciNetGoogle Scholar
  28. 28.
    Amendola, A., Krushynska, A., Daraio, C., Pugno, N.M., Fraternali, F.: Tuning frequency band gaps of tensegrity metamaterials with local and global prestress. Int. J. Solids Struct. 155, 47–56 (2018)Google Scholar
  29. 29.
    Skelton, R.E., de Oliveira, M.C.: Tensegrity Systems. Springer, Berlin (2010)zbMATHGoogle Scholar
  30. 30.
    Micheletti, A.: Bistable regimes in an elastic tensegrity system. Proc. R. Soc. 469(2154), 201300520 (2012)Google Scholar
  31. 31.
    Fraternali, F., De Chiara, E., Skelton, R.E.: On the use of tensegrity structures for kinetic solar facades of smart buildings. Smart. Mater. Struct. 24, 105032 (2015)Google Scholar
  32. 32.
    Amendola, A., Hernández-Nava, E., Goodall, R., Todd, I., Skeltonf, R.E., Fraternali, F.: On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures. Compos. Struct. 131, 66–71 (2015)Google Scholar
  33. 33.
    Fraternali, F., Carpentieri, G., Amendola, A.: On the mechanical modeling of the extreme softening/stiffening response of axially loaded tensegrity prisms. J. Mech. Phys. Solids 74, 136–157 (2014)zbMATHGoogle Scholar
  34. 34.
    Amendola, A., Carpentieri, G., De Oliveira, M., Skelton, R.E., Fraternali, F.: Experimental investigation of the softening-stiffening response of tensegrity prisms under compressive loading. Compos. Struct. 117, 234–243 (2014)Google Scholar
  35. 35.
    Rimoli, J.J., Pal, R.K.: Mechanical response of 3-dimensional tensegrity lattices. Compos. Part B Eng. 115, 30–42 (2017)Google Scholar
  36. 36.
    Rimoli, J.J.: A reduced-order model for the dynamic and post-buckling behavior of tensegrity structures. Mech. Mater. 116, 146–157 (2018)Google Scholar
  37. 37.
    Pal, R.K., Ruzzene, M., Rimoli, J.J.: Tunable wave propagation by varying prestrain in tensegrity-based periodic media. Extreme Mech. Lett. 22, 149–156 (2018)Google Scholar
  38. 38.
    Salahshoor, H., Pal, R.K., Rimol, J.J.: Material symmetry phase transitions in three-dimensional tensegrity metamaterials. J. Mech. Phys. Solids 119, 382–399 (2018)MathSciNetGoogle Scholar
  39. 39.
    Micheletti, A.: Simple analytical models of tensegrity structures. In: Frémond, M., Maceri, F. (eds.) Novel Approaches in Civil Engineering. Lecture Notes in Applied and Computational Mechanics, vol. 14, pp. 351–358. Springer, Berlin (2004)Google Scholar
  40. 40.
    Ekici, M., Mirzazadeh, M., Eslami, M.: Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion. Nonlinear Dyn. 84(2), 669–676 (2016)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Li, L., Xie, Y., Zhu, S.: New exact solutions for a generalized KdV equation. Nonlinear Dyn. 92(2), 215–219 (2018)zbMATHGoogle Scholar
  42. 42.
    Sultan, C., Skelton, R.E.: Deployment of tensegrity structures. Int. J. Solid Struct. 40, 4637–4657 (2003)zbMATHGoogle Scholar
  43. 43.
    Pellegrino, S., Calladine, C.R.: Matrix analysis of statically and kinematically indeterminate frameworks. Int. J. Solid Struct. 22, 409–428 (1986)Google Scholar
  44. 44.
    Materials Spotlight: The Properties of Nylon 12. https://www.cableorganizer.com/learning-center/articles/materials-nylon12.html. Date accessed: 14 Jan 2019
  45. 45.
    Fraternali, F., Porter, M.A., Daraio, C.: Optimal design of composite granular protector. Mech. Adv. Mater. Struct. 17, 1–19 (2010)Google Scholar
  46. 46.
    Daraio, C., Fraternali, F.: Method and Apparatus for Wave Generation and Detection Using Tensegrity Structures, US Pat. No. 8,616,328, granted on December 31, 2013 (2013)Google Scholar
  47. 47.
    Spadoni, A., Daraio, C.: Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. USA 107(16), 7230–7234 (2010)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.DICIIUniversity of Rome Tor VergataRomeItaly
  2. 2.DISAUniversity of BergamoBergamoItaly
  3. 3.DICIVUniversity of SalernoFiscianoItaly

Personalised recommendations