Advertisement

Disturbance attenuation via double-domination approach for feedforward nonlinear system with unknown output function

  • Zong-Yao SunEmail author
  • Min Wang
Original Paper
  • 10 Downloads

Abstract

This paper investigates the problem of disturbance attenuation for a class of feedforward nonlinear systems whose output functions are not precisely known. A new control strategy based on a double-domination approach is proposed to cope with serious coexistence of various uncertainties, including unknown output function and external disturbances. The novelty lies in a distinct perspective to applying two domination gains in the constructions of the observer and the controller in the case when output functions are perturbed by unmeasurable errors, which was previously regarded as a rather difficult problem. A numerical simulation is carried out to illustrate the effectiveness of the proposed scheme.

Keywords

Disturbance attenuation Unknown output function Feedforward nonlinear systems 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Khalil, H.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
  2. 2.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)zbMATHGoogle Scholar
  3. 3.
    Marino, R., Tomei, P.: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice Hall, London (1995)zbMATHGoogle Scholar
  4. 4.
    Qian, C., Lin, W.: Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Trans. Autom. Control 47(10), 1710–1715 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Qian, C.: A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems. In: Proceedings of the IEEE American Control Conference, pp. 4708–4715 (2005)Google Scholar
  6. 6.
    Zhang, J., Liu, Y., Mu, X.: Global adaptive stabilisation of high-order uncertain non-linear systems with double control input channels. IET Control Theory Appl. 9(5), 659–666 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sun, Z., Liu, Z., Zhang, X.: New results on global stabilization for time-delay nonlinear systems with low-order and high-order growth conditions. Int. J. Robust Nonlinear Control 25(6), 878–899 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sun, Z., Li, T., Yang, S.: A unified time-varying feedback approach and its applications in adaptive stabilization of high-order uncertain nonlinear systems. Automatica 70, 249–257 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sun, Z., Yun, M., Li, T.: A new approach to fast global finite-time stabilization of high-order nonlinear system. Automatica 81, 455–463 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhang, L., Sui, S., Li, Y., Tong, S.: Adaptive fuzzy output feedback tracking control with prescribed performance for chemical reactor of MIMO nonlinear systems. Nonlinear Dyn. 80(1–2), 945–957 (2015)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sun, Z., Zhang, D., Meng, Q., Chen, C.: Feedback stabilization of time-delay nonlinear systems with continuous time-varying output function. Int. J. Syst. Sci. 50(2), 244–255 (2019)CrossRefGoogle Scholar
  12. 12.
    Jia, X., Xu, S., Lu, J., Li, Y., Chu, Y., Zhang, Z.: Adaptive control for uncertain nonlinear time-delay systems in a lower-triangular form. J. Frankl. Inst. 355(9), 3911–3925 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, L., Li, X., Wang, H., Niu, B.: Global asymptotic stabilization of stochastic feedforward nonlinear systems with input time-delay. Nonlinear Dyn. 83(3), 1503–1510 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liu, L., Yin, S., Gao, H., Alsaadi, F., Hayat, T.: Adaptive partial-state feedback control for stochastic high-order nonlinear systems with stochastic input-to-state stable inverse dynamic. Automatica 51, 285–291 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Min, H., Xu, S., Zhang, B., Ma, Q.: Output-feedback control for stochastic nonlinear systems subject to input saturation and time-varying delay. IEEE Trans. Autom. Control 64(1), 359–364 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Min, H., Xu, S., Ma, Q., Zhang, B., Zhang, Z.: Composite observer-based output-feedback control for nonlinear time-delay systems with input saturation and its application. IEEE Trans. Ind. Electron. 65(7), 5856–5863 (2018)CrossRefGoogle Scholar
  17. 17.
    Jiang, D., Wang, X., Xu, G., Lin, J.: A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asian J. Appl. Math. 8(3), 447–462 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ma, H., Hou, T.: A separation theorem for stochastic singular linear quadratic control problem with partial information. Acta Math. Appl. Sin. Engl. Ser. 29(2), 303–314 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, R., Liu, Y., Tong, S., Chen, C.: Output feedback stabilization based on dynamic surface control for a class of uncertain stochastic nonlinear systems. Nonlinear Dyn. 67(1), 683–694 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhai, J., Ai, W., Fei, S.: Global output feedback stabilisation for a class of uncertain non-linear systems. IET Control Theory Appl. 7(2), 305–313 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Chen, C., Qian, C., Sun, Z., Liang, Y.: Global output feedback stabilization of a class of nonlinear systems with unknown measurement sensitivity. IEEE Trans. Autom. Control 63(7), 2212–2217 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Qian, C., Lin, W.: Almost disturbance decoupling for a class of high-order nonlinear systems. IEEE Trans. Autom. Control 45(6), 1208–14 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lin, W., Qian, C., Huang, X.: Disturbance attenuation of a class of non-linear systems via output feedback. Int. J. Robust Nonlinear Control 13(15), 1359–1369 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Chen, B., Liu, X.: Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes. IEEE Trans. Fuzzy Syst. 13(6), 832–847 (2005)CrossRefGoogle Scholar
  25. 25.
    Yang, J., Chen, W., Li, S., Chen, X.: Static disturbance-to-output decoupling for nonlinear systems with arbitrary disturbance relative degree. Int. J. Robust Nonlinear Control 23(5), 562–577 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhang, C., Yang, J., Li, S., Yang, N.: A generalized active disturbance rejection control method for nonlinear uncertain systems subject to additive disturbance. Nonlinear Dyn. 83(4), 2361–2372 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Marino, R., Tomei, P.: Adaptive output feedback regulation with almost disturbance decoupling for nonlinearly parameterized systems. Int. J. Robust Nonlinear Control 10(8), 655–669 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shang, F., Liu, Y.: Adaptive disturbance attenuation via output feedback for nonlinear systems with polynomial-of-output growth rate. Int. J. Control 87(3), 600–611 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sun, Z., Zhang, C., Wang, Z.: Adaptive disturbance attenuation for generalized high-order uncertain nonlinear systems. Automatica 80, 102–109 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhang, Z., Liu, X., Liu, Y., Lin, C., Chen, B.: Fixed-time almost disturbance decoupling of nonlinear time-varying systems with multiple disturbances and dead-zone input. Inf. Sci. 450, 267–283 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Sepulchre, R., Jankovic, M., Kokotovic, P.: Constructive Nonlinear Control. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  32. 32.
    Ding, S., Qian, C., Li, S.: Global stabilization of a class of feedforward systems with lower-order nonlinearities. IEEE Trans. Autom. Control 55(3), 691–696 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sun, Z., Song, Z., Li, T., Yang, S.: Output feedback stabilization for high-order uncertain feedforward time-delay nonlinear systems. J. Frankl. Inst. 352(11), 5308–5326 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zhang, X., Baron, L., Liu, Q., Boukas, E.: Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems. IEEE Trans. Autom. Control 56(3), 692–697 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Krstic, M.: Feedback linearizability and explicit integrator forwarding controllers for classes of feedforward systems. IEEE Trans. Autom. Control 49(10), 1668–1682 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Wu, Y., Gao, F., Zhang, Z.: Saturated finite-time stabilization of uncertain nonholonomic systems in feedforward-like form and its application. Nonlinear Dyn. 84(3), 1609–1622 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hale, J.: Ordinary Differential Equations. Wley, New York (1980)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of AutomationQufu Normal UniversityQufuChina

Personalised recommendations