Effects of coupling strength and network topology on signal detection in small-world neuronal networks

  • Xiaojuan SunEmail author
  • Zhaofan Liu
  • Matjaž Perc
Original Paper


We study the effects of different coupling strengths and network topologies on signal detection in small-world neuronal networks. Research has previously revealed that the ability of detecting subthreshold signals could be significantly enhanced by appropriately fine-tuning the noise intensity. Here we show that the coupling strength and the structure of the underlying network can also lead toward enhanced signal detection. In particular, we show that there are two levels of the coupling strength at which the subthreshold signal can be detected at an appropriate noise intensity and network structure. We also show that the network structure has little impact on signal detection if the coupling is weak. On the other hand, for intermediate coupling strengths, we show that the shorter the average path length, the better the signal detection. Finally, if the coupling is strong, we show that there exists an intermediate average path length at which signal detection becomes optimal.


Neuronal network Small-world network Multiple stochastic resonance Signal detection 



Xiaojuan Sun thanks for the supports by the National Natural Science Foundation of China (Grant Nos. 11472061, 11772069) and the Fundamental Research Funds for the Central University (No. 2018XKJC02). Matjaž Perc acknowledges support from the Slovenian Research Agency (Grant Nos. P5-0027 and J1-7009).

Compliance with ethical standards

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.


  1. 1.
    Collins, J.J., Chow, C.C., Imhoff, T.T.: Stochastic resonance without tuning. Nature 376, 236–238 (1995)CrossRefGoogle Scholar
  2. 2.
    Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34, 10–16 (1982)CrossRefzbMATHGoogle Scholar
  3. 3.
    Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A Math. Gen. 14, L453 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995)CrossRefGoogle Scholar
  5. 5.
    Gammaitoni, L.: Stochastic resonance. Rev. Mod. Phys. 70, 45–105 (1998)CrossRefGoogle Scholar
  6. 6.
    Yilmaz, E., Uzuntarla, M., Ozer, M., Perc, M.: Stochastic resonance in hybrid scale-free neuronal networks. Physica A 392, 5735–5741 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775–778 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Giacomelli, G., Giudici, M., Balle, S., Tredicce, J.R.: Experimental evidence of coherence resonance in an optical system. Phys. Rev. Lett. 84, 3298 (2000)CrossRefGoogle Scholar
  9. 9.
    Lee, S.G., Neiman, A., Kim, S.: Coherence resonance in a Hodgkin–Huxley neuron. Phys. Rev. E 57, 3292–3297 (1998)CrossRefGoogle Scholar
  10. 10.
    Vilar, J.M.G., Rubí, J.M.: Stochastic multiresonance. Phys. Rev. Lett. 78, 2882–2885 (1997)CrossRefGoogle Scholar
  11. 11.
    Hessler, N.A., Shirke, A.M., Malinow, R.: The probability of transmitter release at a mammalian central synapse. Nature 366, 569 (1993)CrossRefGoogle Scholar
  12. 12.
    Mcdonnell, M.D., Ward, L.M.: The benefits of noise in neural systems: bridging theory and experiment. Nat. Rev. Neurosci. 12, 415–426 (2011)CrossRefGoogle Scholar
  13. 13.
    Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008)CrossRefGoogle Scholar
  14. 14.
    Faure, P., Korn, H.: A nonrandom dynamic component in the synaptic noise of a central neuron. Proc. Natl. Acad. Sci. USA 94, 6506 (1997)CrossRefGoogle Scholar
  15. 15.
    Jacobson, G.A., Diba, K., Yaronjakoubovitch, A., Oz, Y., Koch, C., Segev, I., Yarom, Y.: Subthreshold voltage noise of rat neocortical pyramidal neurones. J. Physiol. 564, 145–160 (2005)CrossRefGoogle Scholar
  16. 16.
    Wang, Q.Y., Zhang, H.Z., Perc, M., Chen, G.R.: Multiple firing coherence resonances in excitatory and inhibitory coupled neurons. Commun. Nonlinear Sci. 17, 3979–3988 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chen, Y.L., Yu, L.C., Chen, Y.: Reliability of weak signals detection in neurons with noise. Sci. China Technol. Sci. 59, 1–7 (2016)Google Scholar
  18. 18.
    Wang, C.N., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, H.Y., Sun, X.J., Xiao, J.H.: Stochastic multiresonance in coupled excitable FHN neurons. Chaos 28, 043113 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sun, X., Liu, Z.: Combined effects of time delay and noise on the ability of neuronal network to detect the subthreshold signal. Nonlinear Dyn. 92, 1707–1717 (2018)CrossRefGoogle Scholar
  22. 22.
    Azevedo, F.A., Carvalho, L.R., Grinberg, L.T., Farfel, J.M., Ferretti, R.E., Leite, R.E., Jacob, F.W., Lent, R., Herculano-Houzel, S.: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532–541 (2009)CrossRefGoogle Scholar
  23. 23.
    Haydon, P.G.: GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2001)CrossRefGoogle Scholar
  24. 24.
    Liang, X., Tang, M., Dhamala, M., Liu, Z.: Phase synchronization of inhibitory bursting neurons induced by distributed time delays in chemical coupling. Phys. Rev. E 80, 066202 (2009)CrossRefGoogle Scholar
  25. 25.
    Inchiosa, M.E., Bulsara, A.R.: Coupling enhances stochastic resonance in nonlinear dynamic elements driven by a sinusoid plus noise. Phys. Lett. A 200, 283–288 (1995)CrossRefGoogle Scholar
  26. 26.
    Wu, D., Zhu, S., Luo, X., Wu, L.: Effects of adaptive coupling on stochastic resonance of small-world networks. Phys. Rev. E 84, 021102 (2011)CrossRefGoogle Scholar
  27. 27.
    Zhang, R., Hu, M., Xu, Z.: Synchronization in complex networks with adaptive coupling. Phys. Lett. A 368, 276–280 (2007)CrossRefGoogle Scholar
  28. 28.
    Ren, Q., Zhao, J.: Adaptive coupling and enhanced synchronization in coupled phase oscillators. Phys. Rev. E 76, 016207 (2007)CrossRefGoogle Scholar
  29. 29.
    Sun, X.J., Zheng, Y.H.: Effects of time-periodic intercoupling strength on the spiking regularity of a clustered neuronal network. Int. J. Bifurc. Chaos 24, 186 (2014)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Sun, X.J., Han, F., Wiercigroch, M., Shi, X.: Effects of time-periodic intercoupling strength on burst synchronization of a clustered neuronal network. Int. J. Nonlinear Mech. 70, 119–125 (2015)CrossRefGoogle Scholar
  31. 31.
    Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997)CrossRefGoogle Scholar
  32. 32.
    Izhikevich, E., Desai, N.: Relating STDP to BCM. Neural Comput. 15, 1511–1523 (2003)CrossRefzbMATHGoogle Scholar
  33. 33.
    Saudargiene, A., Porr, B., Wörgötter, F.: How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comput. 16, 595–625 (2004)CrossRefzbMATHGoogle Scholar
  34. 34.
    Xie, H., Gong, Y., Wang, Q.: Effect of spike-timing-dependent plasticity on coherence resonance and synchronization transitions by time delay in adaptive neuronal networks. Eur. Phys. J. B 89, 1–7 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yu, H.T., Guo, X.M., Wang, J., Liu, C., Deng, B., Wei, X.L.: Adaptive stochastic resonance in self-organized small-world neuronal networks with time delay. Commun. Nonlinear Sci. 29, 346–358 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Liao, X., Vasilakos, A.V., He, Y.: Small-world human brain networks: perspectives and challenges. Neurosci. Biobehav. Rev. 77, 286–300 (2017)CrossRefGoogle Scholar
  37. 37.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefzbMATHGoogle Scholar
  38. 38.
    Faghiri, A., Stephen, J.M., Wang, Y.P., Wilson, T.W., Calhoun, V.D.: Changing brain connectivity dynamics: from early childhood to adulthood. Hum. Brain Mapp. 39, 1108–1117 (2018)CrossRefGoogle Scholar
  39. 39.
    Cao, M., Wang, J.H., Dai, Z.J., Cao, X.Y., Jiang, L.L., Fan, F.M., Song, X.W., Xia, M.R., Shu, N., Dong, Q.: Topological organization of the human brain functional connectome across the lifespan. Dev. Cogn. Neurosci. 7, 76 (2014)CrossRefGoogle Scholar
  40. 40.
    Cao, M., Shu, N., Cao, Q., Wang, Y., He, Y.: Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Mol. Neurobiol. 50, 1111–1123 (2014)CrossRefGoogle Scholar
  41. 41.
    Cao, Q., Shu, N., An, L., Wang, P., Sun, L., Xia, M.R., Wang, J.H., Gong, G.L., Zang, Y.F., Wang, Y.F.: Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder. J. Neurosci. 33, 10676–10687 (2013)CrossRefGoogle Scholar
  42. 42.
    Ozer, M., Perc, M., Uzuntarla, M.: Stochastic resonance on Newman–Watts networks of Hodgkin-Huxley neurons with local periodic driving. Phys. Lett. A 373, 964–968 (2009)CrossRefzbMATHGoogle Scholar
  43. 43.
    Yu, H.T., Wang, J., Du, J.W., Deng, B., Wei, X.L., Liu, C.: Effects of time delay on the stochastic resonance in small-world neuronal networks. Chaos 23, 013128 (2013)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Yu, H.T., Wang, J., Liu, C., Deng, B., Wei, X.L.: Stochastic resonance on a modular neuronal network of small-world subnetworks with a subthreshold pacemaker. Chaos 21, 047502 (2011)CrossRefzbMATHGoogle Scholar
  45. 45.
    Sun, X.J., Li, G.F.: Synchronization transitions induced by partial time delay in a excitatory-inhibitory coupled neuronal network. Nonlinear Dyn. 89, 1–12 (2017)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Yan, H., Sun, X.J.: Impact of partial time delay on temporal dynamics of Watts–Strogatz small-world neuronal networks. Int. J. Bifurc. Chaos 27, 1750112 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Yu, W.T., Tang, J., Ma, J., Yang, X.: Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system. EPL-Europhys. Lett. 114, 50006 (2016)CrossRefGoogle Scholar
  48. 48.
    Zhu, J., Chen, Z., Liu, X.: Effects of distance-dependent delay on small-world neuronal networks. Phys. Rev. E 93, 042417 (2016)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Yu, H., Wang, J., Du, J., Deng, B., Wei, X., Liu, C.: Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks. Phys. Rev. E 87, 052917 (2013)CrossRefGoogle Scholar
  50. 50.
    Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Physica A 389, 3299–3306 (2010)CrossRefGoogle Scholar
  51. 51.
    Wang, Q.Y., Duan, Z.S., Perc, M., Chen, G.R.: Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability. EPL-Europhys. Lett. 83(5), 50008 (2008)CrossRefGoogle Scholar
  52. 52.
    Perc, M.: Stochastic resonance on excitable small-world networks via a pacemaker. Phys. Rev. E 76, 066203 (2007)CrossRefGoogle Scholar
  53. 53.
    Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos 19, 023112 (2009)CrossRefGoogle Scholar
  54. 54.
    Wang, Q.Y., Chen, G.R., Perc, M.: Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE 6, e15851 (2011)CrossRefGoogle Scholar
  55. 55.
    Jia, Y.B., Gu, H.G.: Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise. Chaos 25(12), L453 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Sun, X.J., Perc, M., Lu, Q.S., Kurths, J.: Effects of correlated Gaussian noise on the mean firing rate and correlations of an electrically coupled neuronal network. Chaos 20(3), 1104 (2010)CrossRefGoogle Scholar
  57. 57.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)CrossRefGoogle Scholar
  58. 58.
    Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)CrossRefGoogle Scholar
  59. 59.
    Fox, R.F., Gatland, I.R., Roy, R., Vemuri, G.: Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A 38, 5938 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of ScienceBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China
  2. 2.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  3. 3.CAMTP–Center for Applied Mathematics and Theoretical PhysicsUniversity of MariborMariborSlovenia
  4. 4.Complexity Science HubViennaAustria

Personalised recommendations