Advertisement

Nonlinear Dynamics

, Volume 96, Issue 3, pp 2103–2114 | Cite as

A nonlocal nonlinear Schrödinger equation derived from a two-layer fluid model

  • Xi-zhong LiuEmail author
  • Jun Yu
Original Paper
  • 92 Downloads

Abstract

By applying a simple symmetry reduction on a two-layer liquid model, a nonlocal counterpart of it is obtained. Then, a general form of nonlocal nonlinear Schrödinger (NNLS) equation with shifted parity, charge conjugate and delayed time reversal is obtained by using multi-scale expansion method. Some kinds of elliptic periodic wave solutions of the NNLS equation, which become soliton solutions and kink solutions when the modulus is taken as unity, are obtained by using elliptic function expansion method. Some representative figures of these solutions are given and analyzed in detail. In addition, by carrying out the classical symmetry method on the NNLS equation, not only the Lie symmetry group but also the related symmetry reduction solutions are given.

Keywords

Nonlocal nonlinear Schrödinger equation Periodic waves Symmetry reduction solutions 

Notes

Acknowledgements

The authors are grateful to the referee, whose comments and suggestions of the earlier version of the paper have led to a substantial clarification and revision of work. This work was supported by the National Natural Science Foundation of China under Grant Nos. 11405110, 11275129 and the Natural Science Foundation of Zhejiang Province of China under Grant No. LY18A050001.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

References

  1. 1.
    Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)CrossRefGoogle Scholar
  2. 2.
    Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ma, L.Y., Zhu, Z.N.: N-soliton solution for an integrable nonlocal discrete focusing nonlinear Schrödinger equation. Appl. Math. Lett. 59, 115–121 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Liu, Y.K., Li, B.: Rogue waves in the (2+1)-dimensional nonlinear Schrödinger equation with a parity-time-symmetric potential. Chin. Phys. Lett. 34, 010202 (2017)CrossRefGoogle Scholar
  6. 6.
    Wen, X.Y., Yan, Z.Y., Yang, Y.Q.: Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Chaos 26(6), 603–151 (2016)CrossRefGoogle Scholar
  7. 7.
    Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Khare, A., Saxena, A.: Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations. J. Math. Phys. 56, 032104 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lou, S.Y., Qiao, Z.J.: Alice–Bob peakon systems. Chin. Phys. Lett. 34(10), 100201 (2017)CrossRefGoogle Scholar
  10. 10.
    Maucher, F., Siminos, E., Krolikowski, W., Skupin, S.: Quasiperiodic oscillations and homoclinic orbits in the nonlinear nonlocal Schrödinger equation. New J. Phys. 15, 083055 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cockburn, S.P., Nistazakis, H.E., Horikis, T.P., Kevrekidis, P.G., Proukakis, N.P., Frantzeskakis, D.J.: Matter-wave dark solitons: stochastic versus analytical results. Phys. Rev. Lett. 104, 174101 (2010)CrossRefGoogle Scholar
  12. 12.
    Pertsch, T., Peschel, U., Kobelke, J., Schuster, K., Bartelt, H., Nolte, S., Tunnermann, A., Lederer, F.: Nonlinearity and disorder in fiber arrays. Phys. Rev. Lett. 93, 053901 (2004)CrossRefGoogle Scholar
  13. 13.
    Conti, C., Peccianti, M., Assanto, G.: Observation of optical spatial solitons in a highly nonlocal medium. Phys. Rev. Lett. 92, 113902 (2004)CrossRefGoogle Scholar
  14. 14.
    Lou, S.Y.: Alice–Bob Systems, \(P_s\)-\(T_d\)-\(C\) Principles and Multi-soliton Solutions. arXiv:1603.03975
  15. 15.
    Lou, S.Y., Huang, F.: Alice–Bob physics: coherent solutions of nonlocal KdV systems. Sci. Rep. 7, 869 (2017)CrossRefGoogle Scholar
  16. 16.
    Jia, M., Lou, S.Y.: Exact \(P_sT_d\) invariant and \(P_sT_d\) symmetric breaking solutions, symmetry reductions and Bäcklund transformations for an AB-KdV system. Phys. Lett. A 382, 1157 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li, C.C., Lou, S.Y., Jia, M.: Coherent structure of Alice–Bob modified Korteweg de-Vries equation. Nonlinear Dyn. 93, 1799 (2018)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tang, X.Y., Liang, Z.F.: A general nonlocal nonlinear Schrödinger equation with shifted parity, charge-conjugate and delayed time reversal. Nonlinear Dyn. 92, 815 (2018)CrossRefGoogle Scholar
  19. 19.
    Tang, X.Y., Liu, S.J., Liang, Z.F., Wang, J.Y.: A general nonlocal variable coefficient KdV equation with shifted parity and delayed time reversal. Nonlinear Dyn. 94(1), 693 (2018)CrossRefGoogle Scholar
  20. 20.
    Tang, X.Y., Liang, Z.F., Hao, X.Z.: Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system. Commun. Nonlinear Sci. 60, 62 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, X.Z., Yu, J., Lou, Z.M.: New interaction solutions from residual symmetry reduction and consistent Riccati expansion of the (\(2+1\))-dimensional Boussinesq equation. Nonlinear Dyn. 92, 1469 (2018)CrossRefzbMATHGoogle Scholar
  23. 23.
    Liu, X.Z., Yu, J., Lou, Z.M.: New Bäcklund transformations of the (\(2+1\))-dimensional Burgers system related to residual symmetry. Eur. Phys. J. Plus 133, 89 (2018)CrossRefGoogle Scholar
  24. 24.
    Liu, X.Z., Yu, J., Lou, Z.M.: New Bäcklund transformations of the (\(2+1\))-dimensional Bogoyavlenskii equation via localization of residual symmetries. Comput. Math. Appl 76(7), 1669 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1979)CrossRefzbMATHGoogle Scholar
  26. 26.
    Lou, S.Y.: Symmetry analysis and exact solutions of the \(2+1\) dimensional sine-Gordon system. J. Math. Phys. 41, 6509 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Nonlinear ScienceShaoxing UniversityShaoxingChina

Personalised recommendations