Advertisement

Adjustable template stiffness device and SDOF nonlinear frequency response

  • Zhilu Lai
  • Tong Sun
  • Satish NagarajaiahEmail author
Original Paper
  • 87 Downloads

Abstract

Devices with displacement dependent stiffness have been explored for vibration isolation. In this paper, an adjustable template stiffness device (ATSD) is presented. The ATSD is made up of pre-compressed springs attached to rollers, rolling along curved templates that allow adjustment of stiffness as a predetermined function of displacement. The ATSD configuration is presented in detail, and an analytical model is developed and validated using test results. The ATSD is tested under harmonic motion to determine its force–displacement behavior; then, it is connected to a single degree of freedom system, with an additional linear elastic stiffness spring, and tested on a shaking table to determine its vibration characteristics. The combination of the ATSD and the additional linear spring results in a composite nonlinear elastic spring with an initial softening behavior followed by hardening behavior or vice versa, i.e., depending on the chosen curved template. Frequency response curves obtained from test results are presented to demonstrate the capability of the ATSD. The new ATSD can be used for vibration isolation studies in future studies.

Keywords

Structural vibration suppression Passive device Variable stiffness device 

Notes

References

  1. 1.
    Alabuzhev, P., Rivin, E.I.: Vibration Protection and Measuring Systems with Quasi-Zero Stiffness. CRC Press, Boca Raton (1989)Google Scholar
  2. 2.
    Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3), 371–452 (2008)CrossRefGoogle Scholar
  3. 3.
    Wang, Y., Li, S., Neild, S.A., Jiang, J.Z.: Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness. Nonlinear Dyn. 88(1), 635–654 (2017)CrossRefGoogle Scholar
  4. 4.
    Zou, K., Nagarajaiah, S.: The solution structure of the Düffing oscillators transient response and general solution. Nonlinear Dyn. 81(1–2), 621–639 (2015)CrossRefzbMATHGoogle Scholar
  5. 5.
    Benacchio, S., Malher, A., Boisson, J., Touzé, C.: Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn. 85(2), 893–911 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Acar, M., Yilmaz, C.: Design of an adaptive–passive dynamic vibration absorber composed of a string–mass system equipped with negative stiffness tension adjusting mechanism. J. Sound Vib. 332(2), 231–245 (2013)CrossRefGoogle Scholar
  7. 7.
    Carrella, A., Brennan, M., Waters, T., Shin, K.: On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib. 315(3), 712–720 (2008)CrossRefGoogle Scholar
  8. 8.
    Carrella, A., Brennan, M., Kovacic, I., Waters, T.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4), 707–717 (2009)CrossRefGoogle Scholar
  9. 9.
    Dong, L., Lakes, R.S.: Advanced damper with negative structural stiffness elements. Smart Mater. Struct. 21(7), 075026 (2012)CrossRefGoogle Scholar
  10. 10.
    Franchek, M., Ryan, M., Bernhard, R.: Adaptive passive vibration control. J. Sound Vib. 189(5), 565–585 (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315(3), 700–711 (2008)CrossRefGoogle Scholar
  12. 12.
    Lee, C.-M., Goverdovskiy, V., Temnikov, A.: Design of springs with negative stiffness to improve vehicle driver vibration isolation. J. Sound Vib. 302(4), 865–874 (2007)CrossRefGoogle Scholar
  13. 13.
    Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330(26), 6311–6335 (2011)CrossRefGoogle Scholar
  14. 14.
    Lu, L.-Y., Chu, S.-Y., Yeh, S.-W., Chung, L.-L.: Seismic test of least-input-energy control with ground velocity feedback for variable-stiffness isolation systems. J. Sound Vib. 331(4), 767–784 (2012)CrossRefGoogle Scholar
  15. 15.
    Pasala, D., Sarlis, A., Nagarajaiah, S., Reinhorn, A., Constantinou, M., Taylor, D.: Adaptive negative stiffness: new structural modification approach for seismic protection. J. Sound Vib. 139(7), 1112–1123 (2012)Google Scholar
  16. 16.
    Platus, D.L.: Negative-stiffness-mechanism vibration isolation systems. In: SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, pp. 98–105. International Society for Optics and Photonics (1999)Google Scholar
  17. 17.
    Sarlis, A., Pasala, D., Constantinou, M., Reinhorn, A., Nagarajaiah, S., Taylor, D.: Negative stiffness device for seismic protection of structures. J. Struct. Eng. 139(7), 1124–1133 (2012)CrossRefGoogle Scholar
  18. 18.
    Shi, X., Zhu, S.: Magnetic negative stiffness dampers. Smart Mater. Struct. 24(7), 072002 (2015)CrossRefGoogle Scholar
  19. 19.
    Spencer Jr., B., Nagarajaiah, S.: State of the art of structural control. J. Struct. Eng. 129(7), 845–856 (2003)CrossRefGoogle Scholar
  20. 20.
    Virgin, L., Davis, R.: Vibration isolation using buckled struts. J. Sound Vib. 260(5), 965–973 (2003)CrossRefGoogle Scholar
  21. 21.
    Walsh, P., Lamancusa, J.: A variable stiffness vibration absorber for minimization of transient vibrations. J. Sound Vib. 158(2), 195–211 (1992)CrossRefGoogle Scholar
  22. 22.
    Weber, F., Boston, C.: Clipped viscous damping with negative stiffness for semi-active cable damping. Smart Mater. Struct. 20(4), 045007 (2011)CrossRefGoogle Scholar
  23. 23.
    Yilmaz, C., Kikuchi, N.: Analysis and design of passive band-stop filter-type vibration isolators for low-frequency applications. J. Sound Vib. 291(3), 1004–1028 (2006)CrossRefGoogle Scholar
  24. 24.
    Zhou, N., Liu, K.: A tunable high-static–low-dynamic stiffness vibration isolator. J. Sound Vib. 329(9), 1254–1273 (2010)CrossRefGoogle Scholar
  25. 25.
    Sun, C., Nagarajaiah, S., Dick, A.: Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel. Nonlinear Dyn. 78(4), 2699–2715 (2014)CrossRefGoogle Scholar
  26. 26.
    Zou, K., Nagarajaiah, S.: Study of a piecewise linear dynamic system with negative and positive stiffness. Commun. Nonlinear Sci. Numer. Simul. 22(1), 1084–1101 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Attary, N., Symans, M., Nagarajaiah, S., Reinhorn, A., Constantinou, M., Sarlis, A., Pasala, D., Taylor, D.: Performance evaluation of negative stiffness devices for seismic response control of bridge structures via experimental shake table tests. J. Earthq. Eng. 19(2), 249–276 (2015)CrossRefGoogle Scholar
  28. 28.
    Attary, N., Symans, M., Nagarajaiah, S., Reinhorn, A.M., Constantinou, M.C., Sarlis, A.A., Pasala, D.T., Taylor, D.P.: Experimental shake table testing of an adaptive passive negative stiffness device within a highway bridge model. Earthq. Spectra 31(4), 2163–2194 (2015)CrossRefGoogle Scholar
  29. 29.
    Nagarajaiah, S.: Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform. Struct. Control Health Monit. 16(7–8), 800–841 (2009)CrossRefGoogle Scholar
  30. 30.
    Sun, T., Lai, Z., Nagarajaiah, S., Li, H.-N.: Negative stiffness device for seismic protection of smart base isolated benchmark building. Struct. Control Health Monit. 24(11), e1968 (2017)CrossRefGoogle Scholar
  31. 31.
    Li, H.-N., Sun, T., Lai, Z., Nagarajaiah, S.: Effectiveness of negative stiffness system in the benchmark structural-control problem for seismically excited highway bridges. J. Bridge Eng. 23(3), 04018001 (2018)CrossRefGoogle Scholar
  32. 32.
    Feldman, M.: Non-linear system vibration analysis using Hilbert transform—I. Free vibration analysis method ‘freevib’. Mech. Syst. Signal Process. 8(2), 119–127 (1994)CrossRefGoogle Scholar
  33. 33.
    Feldman, M.: Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25(3), 735–802 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringRice UniversityHoustonUSA
  2. 2.Department of Mechanical EngineeringRice UniversityHoustonUSA
  3. 3.Department of Civil EngineeringDalian University of TechnologyDalianChina

Personalised recommendations