Advertisement

A constrained error-based MPC for path following of quadrotor with stability analysis

  • Abolfazl Eskandarpour
  • Inna SharfEmail author
Original Paper
  • 49 Downloads

Abstract

This paper proposes a linear constrained model predictive control (MPC) to solve the path following problem for quadrotor unmanned aerial vehicles. In the controller, an augmented model is employed to completely eliminate the tracking error due to external disturbances imposed on the quadrotor. The proposed controller is capable of improving the trade-off between feasibility and performance of the system. By approximating the control input sequence in MPC with Laguerre function, the computational burden significantly decreases and the closed-loop performance improves. In addition, a prescribed stability procedure is applied to guarantee the asymptotic stability of the quadrotor error dynamics. Besides, the proposed method improves the numerical ill-conditioning problem in solving MPC, by modifying the position of the closed-loop system poles to lie inside the unit circle. In the simulation results, two scenarios for the quadrotor tracking problem are considered. The results demonstrate the capability and the effectiveness of the proposed control strategy in disturbance rejection, fast trajectory tracking and the quadrotor stability, while a desired performance is achieved.

Keywords

Constrained model predictive control Laguerre function Prescribed stability Quadrotor dynamics 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Madani, T., Benallegue, A.: Backstepping sliding mode control applied to a miniature quadrotor flying robot. In: IECON 2006—32nd Annual Conference on IEEE Industrial Electronics, pp. 700–705 (2006)Google Scholar
  2. 2.
    Raffo, G.V., Ortega, M.G., Rubio, F.R.: Backstepping/nonlinear H #x221e; control for path tracking of a quadrotor unmanned aerial vehicle. In: 2008 American Control Conference, pp. 3356–3361 (2008)Google Scholar
  3. 3.
    Das, A., Subbarao, K., Lewis, F.: Dynamic inversion with zero-dynamics stabilisation for quadrotor control. IET Control Theory Appl. 3, 303–314 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Islam, S., Liu, P.X., Saddik, A.E.: Nonlinear adaptive control for quadrotor flying vehicle. Nonlinear Dyn. 78, 117–133 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Li, S., Wang, Y., Tan, J.: Adaptive and robust control of quadrotor aircrafts with input saturation. Nonlinear Dyn. 89, 255–265 (2017)CrossRefzbMATHGoogle Scholar
  6. 6.
    Liu, H., Yu, Y., Zhong, Y.: Robust trajectory tracking control for a laboratory helicopter. Nonlinear Dyn. 77, 621–634 (2014)CrossRefzbMATHGoogle Scholar
  7. 7.
    Xian, B., Diao, C., Zhao, B., Zhang, Y.: Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation. Nonlinear Dyn. 79, 2735–2752 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control Eng. Pract. 19(10), 1195–1207 (2011)CrossRefGoogle Scholar
  9. 9.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Raffo, G., Ortega, M., Rubio, F.: An integral predictive/nonlinear H\(\infty \) control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Abdolhosseini, M., Zhang, Y.M., Rabbath, C.A.: An efficient model predictive control scheme for an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70, 27–38 (2013)CrossRefGoogle Scholar
  12. 12.
    Bangura, M., Mahony, R.: Real-time model predictive control for quadrotors. IFAC Proc. Vol. 47(3), 11773–11780 (2014)CrossRefGoogle Scholar
  13. 13.
    Lopes, R.V., Borges, G.A., Ishihara, J.Y.: Model predictive control applied to tracking and attitude stabilization of a VTOL quadrotor aircraft. In: 2011, COBEM Conference, 21st International Congress of Mechanical EngineeringGoogle Scholar
  14. 14.
    Valencia-Palomo, G., Rossiter, J.A.: Using Laguerre functions to improve efficiency of multi-parametric predictive control. In: Proceedings of the 2010 American Control Conference, pp. 4731–4736 (2010)Google Scholar
  15. 15.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Experimental constrained optimal attitude control of a quadrotor subject to wind disturbances. Int. J. Control Autom. Syst. 12, 1289–1302 (2014)CrossRefzbMATHGoogle Scholar
  16. 16.
    Raffo, G.V., Gomes, G.K., Normey-Rico, J.E., Kelber, C.R., Becker, L.B.: A predictive controller for autonomous vehicle path tracking. IEEE Trans. Intell. Transp. Syst. 10, 92–102 (2009)CrossRefGoogle Scholar
  17. 17.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: On trajectory tracking model predictive control of an unmanned quadrotor helicopter subject to aerodynamic disturbances. Asian J. Control 16, 209–224 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kamel, M., Stastny, T., Alexis, K., Siegwart, R.: Model predictive control for trajectory tracking of unmanned aerial vehicles using robot operating system. In: Koubaa, A. (ed.) Robot Operating System (ROS): The Complete Reference. Studies in Computational Intelligence, vol. 2, pp. 3–39. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  19. 19.
    Wang, L.: Model Predictive Control System Design and Implementation Using MATLAB®. Springer, Berlin (2009)zbMATHGoogle Scholar
  20. 20.
    Camacho, E.F., Alba, C .B.: Model Predictive Control, 2nd edn. Springer, London (2007)CrossRefGoogle Scholar
  21. 21.
    Borrelli, F., Bemporad, A., Morari, M.: Predictive Control for Linear and Hybrid System, 3rd edn. Cambridge University Press, Cambridge (2014)zbMATHGoogle Scholar
  22. 22.
    Wang, L.: Use of exponential data weighting in model predictive control design. In: Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), vol. 5, pp. 4857–4862 (2001)Google Scholar
  23. 23.
    Rossiter, J.A., Wang, L.: Exploiting Laguerre functions to improve the feasibility/performance compromise in MPC. In: 2008 47th IEEE Conference on Decision and Control, pp. 4737–4742 (2008)Google Scholar
  24. 24.
    Wahlberg, B.: System identification using Laguerre models. IEEE Trans. Autom. Control 36, 551–562 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentGraduated form Tarbiat Modares UniversityTehranIran
  2. 2.Department of Mechanical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations