Advertisement

Nonlinear Dynamics

, Volume 96, Issue 2, pp 1169–1190 | Cite as

Prediction of period doubling bifurcations in harmonically forced memristor circuits

  • Giacomo InnocentiEmail author
  • Mauro Di Marco
  • Mauro Forti
  • Alberto Tesi
Original Paper
  • 218 Downloads

Abstract

The paper studies bifurcations and complex dynamics in a class of nonautonomous oscillatory circuits with a flux-controlled memristor and harmonic forcing term. It is first shown that, as in the autonomous case, the state space of any memristor circuit of the class can be decomposed in invariant manifolds. It turns out that the memristor circuit dynamics is given by the collection of the dynamics of a family of circuits, with a nonlinear resistor in place of the memristor, which is parameterized by an additional constant input whose value depends on the initial conditions of the memristor circuit. This property makes it possible to employ the harmonic balance method in order to study the periodic solutions and their bifurcations due to changing the amplitude and the frequency of the harmonic input on a fixed manifold or due to changing the initial conditions for a fixed harmonic input. The main result is that in both of these cases the harmonic balance method is quite effective to accurately predict period doubling bifurcations of the periodic solutions. Analytical predictions are obtained in the cases of linear-plus-cubic and piecewise linear memristor flux–charge characteristics.

Keywords

Harmonic balance Memristor Period doubling bifurcation 

Notes

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  3. 3.
    Mazumder, P., Kang, S.M., Waser, R.: Special issue on memristors: devices, models, and applications. Proc. IEEE 100(6), 1911–1919 (2012)CrossRefGoogle Scholar
  4. 4.
    Tetzlaff, R. (ed.): Memristors and Memristive Systems. Springer, New York (2014)Google Scholar
  5. 5.
    Adamatzky, A., Chua, L. (eds.): Memristor Networks. Springer, New York (2014)zbMATHGoogle Scholar
  6. 6.
    Traversa, F.L., Di Ventra, M.: Universal memcomputing machines. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2702–2715 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319–368 (2015)CrossRefGoogle Scholar
  8. 8.
    Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kumar, S., Strachan, J.P., Williams, R.S.: Chaotic dynamics in nanoscale \(\text{ NbO }_2\) Mott memristors for analogue computing. Nature 548, 318 (2017)CrossRefGoogle Scholar
  10. 10.
    Corinto, F., Ascoli, A., Gilli, M.: Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I, Reg. Pap. 58(6), 1323–1336 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gambuzza, L.V., Buscarino, A., Fortuna, L., Frasca, M.: Memristor-based adaptive coupling for consensus and synchronization. IEEE Trans. Circuits Syst. I: Reg. Pap. 62(4), 1175–1184 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ascoli, A., Tetzlaff, R., Biolek, Z., Kolka, Z., Biolkova, V., Biolek, D.: The art of finding accurate memristor model solutions. IEEE J. Emerg. Sel. Topics Circuits Syst. 5(2), 133–142 (2015)CrossRefGoogle Scholar
  13. 13.
    Kim, H., Sah, M., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)CrossRefGoogle Scholar
  14. 14.
    Kvatinsky, S., Ramadan, M., Friedman, E.G., Kolodny, A.: VTEAM: a general model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II 62(8), 786–790 (2015)CrossRefGoogle Scholar
  15. 15.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(05), 1335–1350 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Li, Q., Hu, S., Tang, S., Zeng, G.: Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int. J. Circuit Theory Appl. 42(11), 1172–1188 (2014)CrossRefGoogle Scholar
  17. 17.
    Scarabello, M.C., Messias, M.: Bifurcations leading to nonlinear oscillations in a 3D piecewise linear memristor oscillator. Int. J. Bifurc. Chaos 24(1), 1430001 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Messias, M., Nespoli, C., Botta, V.A.: Hopf bifurcation from lines of equilibria without parameters in memristor oscillators. Int. J. Bifurc. Chaos 20(02), 437–450 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bao, B., Jiang, T., Xu, Q., Chen, M., Wu, H., Hu, Y.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86(3), 1711–1723 (2016)CrossRefGoogle Scholar
  20. 20.
    Ponce, E., Amador, A., Ros, J.: A multiple focus-center-cycle bifurcation in 4d discontinuous piecewise linear memristor oscillators. Nonlinear Dyn. 94, 3011–3028 (2018)CrossRefGoogle Scholar
  21. 21.
    Yuan, F., Wang, G., Shen, Y., Wang, X.: Coexisting attractors in a memcapacitor-based chaotic oscillator. Nonlinear Dyn. 86(1), 37–50 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rajagopal, K., Jafari, S., Karthikeyan, A., Srinivasan, A., Ayele, B.: Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circuits Syst. Signal Process. 37(9), 3702–3724 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yuan, F., Wang, G., Wang, X.: Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. Chaos 27(3), 033103 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Xu, B., Wang, Y., Shen, G.: A simple meminductor-based chaotic system with complicated dynamics. Nonlinear Dyn. 88(3), 2071–2089 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Amador, A., Freire, E., Ponce, E., Ros, J.: On discontinuous piecewise linear models for memristor oscillators. Int. J. Bifurc. Chaos 27(06), 1730022 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ponce, E., Ros, J., Freire, E., Amador, A.: Unravelling the dynamical richness of 3d canonical memristor oscillators. Microelectron. Eng. 182, 15–24 (2017)CrossRefGoogle Scholar
  27. 27.
    Corinto, F., Forti, M.: Memristor circuits: flux–charge analysis method. IEEE Trans. Circuits Syst. I, Reg. Pap. 63(1), 1997–2009 (2016)CrossRefGoogle Scholar
  28. 28.
    Corinto, F., Forti, M.: Memristor circuits: bifurcations without parameters. IEEE Trans. Circuits Syst. I, Reg. Pap. 64(6), 1540–1551 (2017)CrossRefGoogle Scholar
  29. 29.
    Corinto, F., Forti, M.: Memristor circuits: pulse programming via invariant manifolds. IEEE Trans. Circuits Syst. I: Reg. Pap. 65(4), 1327–1339 (2018)CrossRefGoogle Scholar
  30. 30.
    Di Marco, M., Forti, M., Innocenti, G., Tesi, A.: Harmonic balance method to analyze bifurcations in memristor oscillatory circuits. Int. J. Circuit Theory Appl. 46, 66–83 (2018)CrossRefGoogle Scholar
  31. 31.
    Atherton, D.P.: Nonlinear Control Engineering. Van Nostrand Reinhold, London (1975)Google Scholar
  32. 32.
    Mees, A.I.: Dynamics of Feedback Systems. Wiley, New York (1981)zbMATHGoogle Scholar
  33. 33.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upple Saddle River (2002)zbMATHGoogle Scholar
  34. 34.
    Ahamed, A.I., Lakshmanan, M.: Discontinuity induced Hopf and Neimark–Sacker bifurcations in a memristive Murali–Lakshmanan–Chua circuit. Int. J. Bifurc. Chaos 27(06), 1730021 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Xu, Q., Zhang, Q., Bao, B., Hu, Y.: Non-autonomous second-order memristive chaotic circuit. IEEE Access 5, 21039–21045 (2017)CrossRefGoogle Scholar
  36. 36.
    Bao, B., Jiang, P., Wu, H., Hu, F.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. 79(4), 2333–2343 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ahamed, A.I., Lakshmanan, M.: Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali–Lakshmanan–Chua circuit. Int. J. Bifurc. Chaos 23(06), 1350098 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A new driven memristive chaotic circuit. In: 2013 European Conference on Circuit Theory and Design (ECCTD), pp. 1–4 (2013)Google Scholar
  39. 39.
    Murali, K., Lakshmanan, M., Chua, L.O.: The simplest dissipative nonautonomous chaotic circuit. IEEE Trans. Circuits Syst. I 41(6), 462–463 (1994)CrossRefzbMATHGoogle Scholar
  40. 40.
    Genesio, R., Tesi, A.: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28(3), 531–548 (1992)CrossRefzbMATHGoogle Scholar
  41. 41.
    Piccardi, C.: Bifurcations of limit cycles in periodically forced nonlinear systems: the harmonic balance approach. IEEE Trans. Circuits Syst. I 41(12), 315–320 (1994)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Tesi, A., Abed, E.H., Genesio, R., Wang, H.O.: Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics. Automatica 32(9), 1255–1271 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Basso, M., Genesio, R., Tesi, A.: A frequency method or predicting limit cycle bifurcations. Nonlinear Dyn. 13, 339–360 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Bonani, F., Gilli, M.: Analysis of stability and bifurcations of limit cycles in Chua’s circuit through the harmonic-balance approach. IEEE Trans. Circuits Syst. I(46), 881–890 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Di Marco, M., Forti, M., Tesi, A.: Harmonic balance approach to predict period-doubling bifurcations in nearly-symmetric neural networks. J. Circuits Syst. Comput. 12(4), 435–460 (2003)CrossRefGoogle Scholar
  46. 46.
    Innocenti, G., Tesi, A., Genesio, R.: Complex behaviour analysis in quadratic jerk systems via frequency domain Hopf bifurcation. Int. J. Bifurc. Chaos 20(3), 657–667 (2010)CrossRefzbMATHGoogle Scholar
  47. 47.
    Lu, Y., Huang, X., He, S., Wang, D., Zhang, B.: Memristor based van der Pol oscillation circuit. Int. J. Bifurc. Chaos 24(12), 1450154 (2014)CrossRefzbMATHGoogle Scholar
  48. 48.
    Galias, Z.: Study of amplitude control and dynamical behaviors of a memristive band pass filter circuit. IEEE Trans. Circuits Syst. II 65(5), 637–641 (2018)CrossRefGoogle Scholar
  49. 49.
    Chandía, K.J., Bologna, M., Tellini, B.: Multiple scale approach to dynamics of an LC circuit with a charge-controlled memristor. IEEE Trans. Circuits Syst. II 65(1), 120–124 (2018)CrossRefGoogle Scholar
  50. 50.
    Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Jimenez-Fernandez, V.M., Jimenez-Fernandez, M., Vazquez-Leal, H., Muñoz Aguirre, E., Cerecedo-Nuñez, H.H., Filobello-Niño, U.A., Castro-Gonzalez, F.J.: Transforming the canonical piecewise-linear model into a smooth-piecewise representation. SpringerPlus 5(1), 1612 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Information Engineering and MathematicsUniversity of SienaSienaItaly
  2. 2.Department of Information EngineeringUniversity of FlorenceFlorenceItaly

Personalised recommendations