Nonlinear dynamic behavior of a clamped–clamped beam from BNC nanotube impacted by fullerene

  • Likui Yang
  • Kun Cai
  • Jiao Shi
  • Yi Min Xie
  • Qing-Hua QinEmail author
Original Paper


The nonlinear dynamic behavior of a clamped–clamped nanobeam built with boron nitride carbon (BNC) nanotube is investigated as for its potential application in a mass sensor. To make it anisotropic in terms of bending stiffness, the cross section of the tube contains symmetrically two B–N zones and two carbon zones which accommodate 60% of atoms in the whole nanotube. The dynamic behavior of the nanosensor, colliding with a high-speed \(\hbox {C}_{60}\) at the central part of the beam, is evaluated using molecular dynamics simulations and fast Fourier transform approaches. Results obtained show that the amplitude of vibration of the tube depends on the magnitude \((v_{\mathrm{In}})\) and direction (\(\theta \)) of the incident velocity of the \(\hbox {C}_{60}\). When \(v_{\mathrm{In}}\) is higher than a critical value, the beam will be damaged in the collision. The position of the damage on the nanobeam and the critical value depend on \(\theta \). If \(v_{\mathrm{In}}\) is lower than the critical value, the first-order frequency of the vibration at the beam centroid is lower when impacted by a faster \(\hbox {C}_{60}\). The second-order frequency depends on the configuration of the beam’s central cross section. The intervals of the first-order frequency with respect to \(\theta = 0^{\circ }\) and \(90^{\circ }\) are not overlapped. These findings hint that a BNC nanobeam can be used to measure the mass of a molecular under a known incident velocity or an incident velocity of a known molecular via this model.


BNC nanotube Nanobeam Transverse vibration Molecular dynamics Fast Fourier transform 



The authors are grateful for financial support from National Key Research and Development Plan, China (Grant No.: 2017YFC0405102), National Natural Science Foundation, China (11772204; 51505388), Research Foundation for PhD in Northwest A&F University (Grant No.: 2452016176), Fundamental Research Funds for the Central Universities (Grant No.: 2452017119).


  1. 1.
    Poncharal, P., Wang, Z., Ugarte, D., De Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999)CrossRefGoogle Scholar
  2. 2.
    Burg, T.P., Godin, M., Knudsen, S.M., Shen, W., Carlson, G., Foster, J.S., et al.: Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139), 1066–1069 (2007)CrossRefGoogle Scholar
  3. 3.
    Zhang, Y., Liu, Y.: Detecting both the mass and position of an accreted particle by a micro/nano-mechanical resonator sensor. Sensors 14(9), 16296–16310 (2014)CrossRefGoogle Scholar
  4. 4.
    Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431(7006), 284–287 (2004)CrossRefGoogle Scholar
  5. 5.
    Garcia-Sanchez, D., San Paulo, A., Esplandiu, M.J., Perez-Murano, F., Forró, L., Aguasca, A., et al.: Mechanical detection of carbon nanotube resonator vibrations. Phys. Rev. Lett. 99(8), 085501 (2007)CrossRefGoogle Scholar
  6. 6.
    Imboden, M., Mohanty, P.: Dissipation in nanoelectromechanical systems. Phys. Rep. 534(3), 89–146 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yang, Y.-T., Callegari, C., Feng, X., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6(4), 583–586 (2006)CrossRefGoogle Scholar
  8. 8.
    Jensen, K., Kim, K., Zettl, A.: An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3(9), 533 (2008)CrossRefGoogle Scholar
  9. 9.
    Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7(5), 301 (2012)CrossRefGoogle Scholar
  10. 10.
    Qiu, W., Kang, Y.L., Lei, Z.K., Qin, Q.H., Li, Q., Wang, Q.: Experimental study for Raman Strain Rosette based on carbon nanotube strain sensor. J. Raman Spectroscopy 41, 1216–1220 (2010)CrossRefGoogle Scholar
  11. 11.
    Cai, K., Yu, J., Wan, J., Yin, H., Qin, Q.H.: Configuration jumps of rotor in a nanomotor from carbon nanostructures. Carbon 101, 168–176 (2016)CrossRefGoogle Scholar
  12. 12.
    Cai, K., Li, Y., Qin, Q.H., Yin, H.: Gradientless temperature-driven rotating motor from a double-walled carbon nanotube. Nanotechnology 25(50), 505701 (2014)CrossRefGoogle Scholar
  13. 13.
    Qin, Z., Qin, Q.H., Feng, X.Q.: Mechanical property of carbon nanotubes with intramolecular junctions: molecular dynamics simulations. Phys. Lett. A 372(44), 6661–6666 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Qiu, W., Kang, Y.L., Lei, Z.K., Qin, Q.H., Li, Q.: A new theoretical model of a carbon nanotube strain sensor. Chin. Phys. Lett. 26(8), 080701 (2009)CrossRefGoogle Scholar
  15. 15.
    Xu, T., Ruzziconi, L., Younis, M.I.: Global investigation of the nonlinear dynamics of carbon nanotubes. Acta Mech. 228(3), 1029–1043 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Xu, T., Younis, M.I.: Nonlinear dynamics of carbon nanotubes under large electrostatic force. J. Comput. Nonlinear Dyn. 11(2), 021009 (2016)CrossRefGoogle Scholar
  17. 17.
    Qiu, W., Li, Q., Lei, Z.K., Qin, Q.H., Deng, W.L., Kang, Y.L.: The use of a carbon nanotube sensor for measuring strain by micro-Raman spectroscopy. Carbon 53, 161–168 (2013)CrossRefGoogle Scholar
  18. 18.
    Chopra, N.G., Luyken, R., Cherrey, K., Crespi, V.H.: Boron nitride nanotubes. Science 269(5226), 966 (1995)CrossRefGoogle Scholar
  19. 19.
    Loiseau, A., Willaime, F., Demoncy, N., Hug, G., Pascard, H.: Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 76(25), 4737–4740 (1996)CrossRefGoogle Scholar
  20. 20.
    Arenal, R., Stephan, O., Cochon, J.-L., Loiseau, A.: Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. J. Am. Chem. Soc. 129(51), 16183–16189 (2007)CrossRefGoogle Scholar
  21. 21.
    Knobel, R.G.: Mass sensors: weighing single atoms with a nanotube. Nat. Nanotechnol. 3(9), 525–526 (2008)CrossRefGoogle Scholar
  22. 22.
    Enouz, S., Stéphan, O., Cochon, J.-L., Colliex, C., Loiseau, A.: C–BN patterned single-walled nanotubes synthesized by laser vaporization. Nano Lett. 7(7), 1856–1862 (2007)CrossRefGoogle Scholar
  23. 23.
    Zhang, G., Liu, Z., Zhang, L., Jing, L., Shi, K.: Growth and characterization of BCN nanotubes with high boron and nitrogen content. J. Chem. Sci. 125(5), 1169–1176 (2013)CrossRefGoogle Scholar
  24. 24.
    Zhang, J., Meguid, S.: Composition-dependent buckling behaviour of hybrid boron nitride-carbon nanotubes. Phys. Chem. Chem. Phys. 17(19), 12796–12803 (2015)CrossRefGoogle Scholar
  25. 25.
    Chiang, W.-H., Hsieh, C.-Y., Lo, S.-C., Chang, Y.-C., Kawai, T., Nonoguchi, Y.: C/BCN core/shell nanotube films with improved thermoelectric properties. Carbon 109, 49–56 (2016)CrossRefGoogle Scholar
  26. 26.
    Cai, K., Yang, L.-K., Shi, J., Qin, Q.-H.: Critical conditions for escape of a high-speed fullerene from a BNC nanobeam after collision. Sci. Rep. 8(1), 913 (2018)CrossRefGoogle Scholar
  27. 27.
    Kroto, H.W., Heath, J.R., Obrien, S.C., Curl, R.F., Smalley, R.E.: C60—Buckminsterfullerene. Nature 318(6042), 162–163 (1985)CrossRefGoogle Scholar
  28. 28.
    Mohlenkamp, M.J.: A fast transform for spherical harmonics. J. Fourier Anal. Appl. 5(2–3), 159–184 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Heideman, M., Johnson, D., Burrus, C.: Gauss and the history of the fast Fourier transform. IEEE ASSP Mag. 1(4), 14–21 (1984)CrossRefzbMATHGoogle Scholar
  30. 30.
    Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39(8), 5566 (1989)CrossRefGoogle Scholar
  31. 31.
    Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472–6486 (2000)CrossRefGoogle Scholar
  32. 32.
    Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 106, 463–477 (1924)CrossRefGoogle Scholar
  33. 33.
    Weaver Jr., W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering. Wiley, New York (1990)Google Scholar
  34. 34.
    Smirnov, V., Manevitch, L.: Semi-inverse method in nonlinear mechanics: application to couple shell-and beam-type oscillations of single-walled carbon nanotubes. Nonlinear Dyn. 93, 205–218 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Water Resources and Architectural EngineeringNorthwest A&F UniversityYanglingChina
  2. 2.Centre for Innovative Structures and Materials, School of EngineeringRMIT UniversityMelbourneAustralia
  3. 3.Research School of EngineeringThe Australian National UniversityCanberraAustralia

Personalised recommendations