Advertisement

The coupling strength versus convergence speed in pinning control

  • Ming-Yang ZhouEmail author
  • Xiao-Yu Li
  • Wen-Man Xiong
  • Hao Liao
Original Paper
  • 83 Downloads

Abstract

Pinning control, which drives a networked system to a coherent state, has attracted much attention in recent years. The controllability of pinning control is usually characterized by the ratio of the largest to the smallest eigenvalues of the Laplacian relevant matrices. In this paper, we demonstrate that the ratio evaluation cannot precisely characterize the pinning controllability, especially the convergence rate (Lyapunov exponent) of a system. Thus, we propose a method to the pinning controllability from two perspectives: the coupling range and convergence speed. The former represents the synchronization range of the coupling strength between agents. Higher coupling range is better. However, the convergence speed characterizes the convergence rate of the pinning synchronization. Moreover, we analytically show that the classical ratio metric, the coupling range and convergence speed cannot arrive at optimums simultaneously. Comparing with the classical ratio metric, the pinning controllability could be better characterized by the coupling range and convergence speed in analytical and practical ways.

Keywords

Pinning control Synchronization Control strength Convergence speed 

Notes

Acknowledgements

The authors acknowledge Dr. Alexandre Vidmer for helping improve the quality of the manuscript. This work was jointly supported by the National Natural Science Foundation of China (Nos. 61703281, 11547040, 61803266, 61503140 and 61873171), the Ph.D. Start-Up Fund of Natural Science Foundation of Guangdong Province, China (Nos. 2017A030310374 and 2016A030313036), the Science and Technology Innovation Commission of Shenzhen (No. JCYJ20160520162743717), Shenzhen Science and Technology Foundation (Nos. JCYJ20150529164656096 and JCYJ20170302153955969), Guangdong Pre-national project (2014GKXM054), Guangdong Province Key Laboratory of Popular High Performance Computers (2017B030314073), Foundation for Distinguished Young Talents in Higher Education of Guangdong (2015KONCX143), and the Young Teachers Start-up Fund of Natural Science Foundation of Shenzhen University.

Compliance with ethical standards

Conflicts of interest

The authors declared that they have no conflict of interest.

References

  1. 1.
    Wang, X., Li, X., Jinhu, L.: Control and flocking of networked systems via pinning. IEEE Circuits Syst. Mag. 10(3), 83–91 (2010)CrossRefGoogle Scholar
  2. 2.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Liu, Y.-Y., Barabási, A.-L.: Control principles of complex systems. Rev. Mod. Phys. 88(3), 035006 (2016)CrossRefGoogle Scholar
  4. 4.
    Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109 (1998)CrossRefGoogle Scholar
  5. 5.
    Stankovski, T., Pereira, T., McClintock, P.V.E., Stefanovska, A.: Coupling functions: universal insights into dynamical interaction mechanisms. Rev. Mod. Phys.cs 89(4), 045001 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Yang, W., Wang, Y., Wang, X., Shi, H., Ou, L.: Optimal selection strategy for multi-agent system with single leader. In: CDC, pp. 2767–2772 (2012)Google Scholar
  7. 7.
    Yan, G., Vértes, P.E., Towlson, E.K., Chew, Y.L., Walker, D.S., Schafer, W.R., Barabási, A.-L.: Network control principles predict neuron function in the caenorhabditis elegans connectome. Nature 550(7677), 519 (2017)CrossRefGoogle Scholar
  8. 8.
    Wen-Bo, D., Ying, W., Yan, G., Zhu, Y.-B., Cao, X.-B.: Heterogeneous strategy particle swarm optimization. IEEE Trans. Circuits Syst. II: Express Br. 64(4), 467–471 (2017)CrossRefGoogle Scholar
  9. 9.
    Tang, Y., Qian, F., Gao, H., Kurths, J.: Synchronization in complex networks and its application—a survey of recent advances and challenges. Annu. Rev. Control 38(2), 184–198 (2014)CrossRefGoogle Scholar
  10. 10.
    Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Xiang, L.Y., Liu, Z.X., Chen, Z.Q., Chen, F., Yuan, Z.Z.: Pinning control of complex dynamical networks with general topology. Phys. A: Stat. Mech. Appl. 379(1), 298–306 (2007)CrossRefGoogle Scholar
  12. 12.
    Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Syst. I: Regul. Pap. 51(10), 2074–2087 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, X., Housheng, S.: Pinning control of complex networked systems: a decade after and beyond. Annu. Rev. Control 38(1), 103–111 (2014)CrossRefGoogle Scholar
  14. 14.
    Bao, H., Park, J.H., Cao, J.: Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn. 82(3), 1343–1354 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Guan, Z.-H., Liu, Z.-W., Feng, G., Wang, Y.-W.: Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control. IEEE Trans. Circuits Syst. I: Regul. Pap. 57(8), 2182–2195 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cowan, N.J., Chastain, E.J., Vilhena, D.A., Freudenberg, J.S., Bergstrom, C.T.: Nodal dynamics, not degree distributions, determine the structural controllability of complex networks. PloS ONE 7(6), e38398 (2012)CrossRefGoogle Scholar
  17. 17.
    Nepusz, T., Vicsek, T.: Controlling edge dynamics in complex networks. Nat. Phys. 8(7), 568 (2012)CrossRefGoogle Scholar
  18. 18.
    Amani, A.M., Jalili, M., Xinghuo, Y., Stone, L.: Finding the most influential nodes in pinning controllability of complex networks. IEEE Trans. Circuits Syst. II: Express Br. 64(6), 685–689 (2017)CrossRefGoogle Scholar
  19. 19.
    He, W., Zhang, B., Han, Q.-L., Qian, F., Kurths, J., Cao, J.: Leader-following consensus of nonlinear multiagent systems with stochastic sampling. IEEE Trans. Cybern. 47(2), 327–338 (2017)Google Scholar
  20. 20.
    Wang, X., She, K., Zhong, S., Cheng, J.: Synchronization of complex networks with non-delayed and delayed couplings via adaptive feedback and impulsive pinning control. Nonlinear Dyn. 86(1), 165–176 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Guo, L., Cao, S.: Anti-disturbance control theory for systems with multiple disturbances: a survey. ISA Trans. 53(4), 846–849 (2014)CrossRefGoogle Scholar
  22. 22.
    He, W., Chen, G., Han, Q.-L., Qian, F.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inf. Sci. 380, 145–158 (2017)CrossRefGoogle Scholar
  23. 23.
    Xing, L., Wen, C., Liu, Z., Hongye, S., Cai, J.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2076 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, L., Dai, H.P., Dong, H., Cao, Y.Y., Sun, Y.X.: Adaptive synchronization of weighted complex dynamical networks through pinning. Eur. Phys. J. B 61(3), 335–342 (2008)CrossRefGoogle Scholar
  25. 25.
    Song, Q., Cao, J.: On pinning synchronization of directed and undirected complex dynamical networks. IEEE Trans. Circuits Syst. I: Regul. Pap. 57(3), 672–680 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lei, X., Cai, S., Jiang, S., Liu, Z.: Adaptive outer synchronization between two complex delayed dynamical networks via aperiodically intermittent pinning control. Neurocomputing 222, 26–35 (2017)CrossRefGoogle Scholar
  27. 27.
    Porfiri, M., Pigliacampo, R.: Master-slave global stochastic synchronization of chaotic oscillators. SIAM J. Appl. Dyn. Syst. 7(3), 825–842 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    DeLellis, P., Garofalo, F., Porfiri, M., et al.: Evolution of complex networks via edge snapping. IEEE Trans. Circuits Syst. I: Regul. Pap. 57(8), 2132–2143 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    DeLellis, P., Garofalo, F., Iudice, F.L.: The partial pinning control strategy for large complex networks. Automatica 89, 111–116 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Barabási, A.-L.: Network Science. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  31. 31.
    Ducruet, C., Beauguitte, L.: Spatial science and network science: review and outcomes of a complex relationship. Netw. Spat. Econ. 14(3–4), 297–316 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Jalili, M., Xinghuo, Y.: Enhancing pinning controllability of complex networks through link rewiring. IEEE Trans. Circuits Syst. II: Express Br. 64(6), 690–694 (2017)CrossRefGoogle Scholar
  33. 33.
    Yang, W., Cao, L., Wang, X., Li, X.: Consensus in a heterogeneous influence network. Phys. Rev. E 74(3), 037101 (2006)CrossRefGoogle Scholar
  34. 34.
    Liao, H., Mariani, M.S., Medo, M., Zhang, Y.-C., Zhou, M.-Y.: Ranking in evolving complex networks. Phys. Rep. 689, 1–54 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Chen, G.: Pinning control and controllability of complex dynamical networks. Int. J. Autom. Comput. 14(1), 1–9 (2017)CrossRefGoogle Scholar
  36. 36.
    Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)CrossRefGoogle Scholar
  37. 37.
    Wang, X.F., Chen, G.: Pinning control of scale-free dynamical networks. Phys. A: Stat. Mech. Appl. 310(3–4), 521–531 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Rong, Z. H., Li, X., Lu, W. L.: Pinning a complex network through the betweenness centrality strategy. In: IEEE International Symposium on Circuits and Systems, 2009. ISCAS 2009. IEEE, pp. 1689–1692 (2009)Google Scholar
  39. 39.
    Jalili, M., Sichani, O.A., Xinghuo, Y.: Optimal pinning controllability of complex networks: dependence on network structure. Phys. Rev. E 91(1), 012803 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Orouskhani, Y., Jalili, M., Xinghuo, Y.: Optimizing dynamical network structure for pinning control. Sci. Rep. 6, 24252 (2016)CrossRefGoogle Scholar
  41. 41.
    Barabási, A.-L.: Network science. Philos. Trans. R. Soc. A 371(1987), 20120375 (2013)CrossRefGoogle Scholar
  42. 42.
    Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wenlian, L., Chen, T.: New approach to synchronization analysis of linearly coupled ordinary differential systems. Phys. D: Nonlinear Phenom. 213(2), 214–230 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Wenwu, Y., Chen, G., Jinhu, L., Kurths, J.: Synchronization via pinning control on general complex networks. SIAM J. Control Optim. 51(2), 1395–1416 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Stewart, I.: Mathematics: the Lorenz attractor exists. Nature 406(6799), 948 (2000)CrossRefGoogle Scholar
  46. 46.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)CrossRefzbMATHGoogle Scholar
  47. 47.
    Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(03), 659–661 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(07), 1465–1466 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Williams, G.: Chaos Theory Tamed. CRC Press, Boca Raton (2014)zbMATHGoogle Scholar
  50. 50.
    Lü, L., Pan, L., Zhou, T., Zhang, Y.-C., Stanley, H.E.: Toward link predictability of complex networks. Proc. Natl. Acad. Sci. 112(8), 2325–2330 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Stewart, G.W.: Matrix Perturbation Theory. Academic Press, New York (1990)zbMATHGoogle Scholar
  52. 52.
    Beuming, T., Skrabanek, L., Niv, M.Y., Mukherjee, P., Weinstein, H.: Pdzbase: a protein–protein interaction database for pdz-domains. Bioinformatics 21(6), 827–828 (2004)CrossRefGoogle Scholar
  53. 53.
    Motter, A.E., Myers, S.A., Anghel, M., Nishikawa, T.: Spontaneous synchrony in power-grid networks. Nat. Phys. 9(3), 191 (2013)CrossRefGoogle Scholar
  54. 54.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)CrossRefGoogle Scholar
  55. 55.
    Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A: Stat. Mech. Appl. 390(6), 1150–1170 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Computer Science and Software EngineeringShenzhen UniversityShenzhenPeople’s Republic of China

Personalised recommendations