Nonlinear Dynamics

, Volume 96, Issue 1, pp 765–788 | Cite as

A memristor–meminductor-based chaotic system with abundant dynamical behaviors

  • Birong Xu
  • Guangyi WangEmail author
  • Herbert Ho-Ching Iu
  • Simin Yu
  • Fang Yuan
Original Paper


In this paper, we introduce a memristor model and a meminductor model and design the corresponding emulator circuits for imitating their characteristics. By employing the two models, we propose a very simple chaotic circuit that contains only three elements in parallel: a memristor, a meminductor and a linear passive capacitor. The circuit is very simple, but has very abundant dynamical behaviors, including line equilibrium set, bursting, coexisting attractors, transient chaos, transient period and intermittency. Furthermore, we replace the memristor and meminductor with their corresponding emulators in the proposed circuit to make a hardware experiment, which illustrates the validity of the theoretical analysis.


Chaos Memristor Meminductor 



This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 61771176, 61271064), the Natural Science Foundations of Fujian Province (Grant Nos. 2016J01761) and the Natural Science Foundations of Zhejiang Province (Grant No. LY18F010012).

Compliance with ethical standards

Conflict of interest

the authors declare that they have no conflict of interest.


  1. 1.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  4. 4.
    Biolek, Z., Biolek, D., Biolkova, V.: SPICE model of memristor with nonlinear dopant drift. Radioengineering 18, 210–214 (2009)zbMATHGoogle Scholar
  5. 5.
    Joglekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30, 661–675 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Prodromakis, T., Peh, B.P., Papavassiliou, C., Toumazou, C.: A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron. Dev. 58, 3099–3105 (2011)CrossRefGoogle Scholar
  7. 7.
    Wen, S.P., Xie, X.D., Yan, Z., Huang, T.W., Zeng, Z.G.: General memristor models with applications in multilayer neural networks. Neural Netw. 103, 142–149 (2018)CrossRefGoogle Scholar
  8. 8.
    Kvatinsky, S., Ramadan, M., Friedman, E.G., Kolodny, A.: VTEAM: a general model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II Express Briefs 62, 786–790 (2015)Google Scholar
  9. 9.
    Xu, Q., Lin, Y., Bao, B.C., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fractals 83, 186–200 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rak, A., Cserey, G.: Macromodeling of the memristor in SPICE. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29, 632–636 (2010)CrossRefGoogle Scholar
  11. 11.
    Yu, D.S., Sun, T.T., Zheng, C.Y., Iu, H.H.C., Fernando, T.: A simpler memristor emulator based on varactor diode. Chin. Phys. Lett. 35, 058401 (2018)CrossRefGoogle Scholar
  12. 12.
    Sánchez-López, C., Aguila-Cuapio, L.E.: A 860 kHz grounded memristor emulator circuit. AEU Int. J. Electron. Commun. 73, 23–33 (2017)CrossRefGoogle Scholar
  13. 13.
    Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97, 1717–1724 (2009)CrossRefGoogle Scholar
  14. 14.
    Wang, G.Y., Jin, P.P., Wang, X.W., Shen, Y.R., Yuan, F., Wang, X.Y.: A flux-controlled model of meminductor and its application in chaotic oscillator. Chin. Phys. B 25, 090502 (2016)CrossRefGoogle Scholar
  15. 15.
    Liang, Y., Chen, H., Yu, D.S.: A practical implementation of a floating memristor-less meminductor emulator. IEEE Trans. Circuits Syst. II Express Briefs 61, 299–303 (2014)CrossRefGoogle Scholar
  16. 16.
    Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahmad, B.: Synchronization between neurons coupled by memristor. Chaos Solitons Fractals 104, 435–442 (2017)CrossRefGoogle Scholar
  17. 17.
    Vourkas, I., Sirakoulis, G.C.: Emerging memristor-based logic circuit design approaches: a review. IEEE Circuits Syst. Mag. 16, 15–30 (2016)CrossRefGoogle Scholar
  18. 18.
    Zhang, G., Wu, F.Q., Hayat, T., Ma, J.: Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Commun. Nonlinear Sci. 65, 79–90 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhang, G., Wang, C.N., Alzahrani, F., Wu, F.Q., An, X.L.: Investigation of dynamical behaviors of neurons driven by memristive synapse. Chaos Solitons Fractals 108, 15–24 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wen, S.P., Wei, H.Q., Zeng, Z.G., Huang, T.W.: Memristive fully convolutional networks: an accurate hardware image-segmentor in deep learning. IEEE Trans. Emerg. Top. Comput. Intell. 2, 324–334 (2018)CrossRefGoogle Scholar
  21. 21.
    Wen, S.P., Xiao, S.X., Yan, Z., Zeng, Z.G., Huang, T.W.: Adjusting learning rate of memristor-based multilayer neural networks via fuzzy method. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. (2018).
  22. 22.
    Wen, S.P., Hu, R., Yang, Y., Huang, T.W., Zeng, Z.G., Song, Y.D.: Memristor-based echo state network with online least mean square. IEEE Trans. Syst. Man Cybern. Syst. (2018).
  23. 23.
    Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, G.Y., Yuan, F., Chen, G.R., Zhang, Y.: Coexisting multiple attractors and riddled basins of a memristive system. Chaos 28, 013125 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yuan, F., Wang, G.Y., Jin, P.P., Wang, X.Y.: Chaos in a meminductor based circuit. Int. J. Bifurc. Chaos 26, 1650130 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wang, C.H., Liu, X.M., Xia, H.: Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system. Chaos 27, 033114 (2017)CrossRefzbMATHGoogle Scholar
  27. 27.
    Njitacke, Z.T., Kengne, J., Tapche, R.W., Pelap, F.B.: Uncertain destination dynamics of a novel memristive 4D autonomous system. Chaos Solitons Fractals 107, 177–185 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Corinto, F., Forti, M.: Memristor circuits: bifurcations without parameters. IEEE Trans. Circuits Syst. I Regul. Pap. 64, 1540–1551 (2017)CrossRefGoogle Scholar
  29. 29.
    Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc. Chaos 20, 1567–1580 (2010)CrossRefGoogle Scholar
  30. 30.
    Xu, B.R.: A simplest parallel chaotic system of memristor. Acta Phys. Sin. 62, 190506 (2013)Google Scholar
  31. 31.
    Teng, L., Iu, H.H.C., Wang, X.Y., Wang, X.K.: Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dyn. 77, 231–241 (2014)CrossRefGoogle Scholar
  32. 32.
    Lozi, R.P., Abdelouahab, M.S.: Hopf bifurcation and chaos in simplest fractional-order memristor-based electrical circuit. Indian J. Ind. Appl. Math. 6, 105–119 (2015)CrossRefGoogle Scholar
  33. 33.
    Xu, B.R., Wang, G.Y., Shen, Y.R.: A simple meminductor-based chaotic system with complicated dynamics. Nonlinear Dyn. 88, 2071–2089 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Li, C., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. 224, 1493–1506 (2015)Google Scholar
  35. 35.
    Xu, Q., Lin, Y., Bao, B.C., Chen, M.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fractals 83, 186–200 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Deschênes, M., Roy, J.P., Steriade, M.: Thalamic bursting mechanism: an inward slow current revealed by membrane hyperpolarizsation. Brain Res. 239, 289–293 (1982)CrossRefGoogle Scholar
  37. 37.
    Wong, R.S.K., Prince, D.A.: Afterpotential generation in hippocampal pyramidal cells. J. Neurophysiol. 45, 86–97 (1981)CrossRefGoogle Scholar
  38. 38.
    Wu, H.G., Bao, B.C., Liu, Z., Xu, Q., Jiang, P.: Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn. 83, 893–903 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wang, Y., Ma, J.: Bursting behavior in degenerate optical parametric oscillator under noise. Optik 139, 231–238 (2017)CrossRefGoogle Scholar
  40. 40.
    Kingston, S.L., Thamilmaran, K.: Bursting oscillations and mixed-mode oscillations in driven Liénard system. Int. J. Bifurc. Chaos 27, 1730025 (2017)CrossRefzbMATHGoogle Scholar
  41. 41.
    Rinzel, J.: Bursting oscillations in an excitable membrane model. In: Sleeman, B.D., Jarvis, R.J. (eds.) Ordinary and Partial Differential Equations, pp. 304–316. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  42. 42.
    Teka, W., Tabak, J., Bertram, R.: The relationship between two fast/slow analysis techniques for bursting oscillations. Chaos 22, 1288–1351 (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Kengne, J., Negou, A.N., Tchiotsop, D.: Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Int. J. Bifurc. Chaos 27, 1750100 (2017)CrossRefzbMATHGoogle Scholar
  44. 44.
    Hu, X.Y., Liu, C.X., Liu, L., Ni, J.K., Yao, Y.P.: Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn. 91, 1541–1554 (2018)CrossRefGoogle Scholar
  45. 45.
    Pham, V.T., Jafari, S., Vaidyanathan, S., Volos, C., Wang, X.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59, 358–363 (2016)CrossRefGoogle Scholar
  46. 46.
    Lai, Q., Akgul, A., Li, C.B., Xu, G.H., Çavuşoğlu, Ü.: A new chaotic system with multiple attractors: dynamic analysis, circuit realization and s-box design. Entropy 20, 12 (2017)CrossRefGoogle Scholar
  47. 47.
    Sabarathinam, S., Volos, C.K., Thamilmaran, K.: Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator. Nonlinear Dyn. 87, 37–49 (2017)CrossRefGoogle Scholar
  48. 48.
    Guo, M., Xue, Y.B., Gao, Z.H., Zhang, Y.M., Dou, G., Li, Y.X.: Dynamic analysis of a physical SBT memristor-based chaotic circuit. Int. J. Bifurc. Chaos 27, 1730047 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Wang, W., Zeng, Y.C., Sun, R.T.: Research on a six-order chaotic circuit with three memristors. Acta Phys. Sin. 66, 040502 (2017)Google Scholar
  50. 50.
    Bao, B.C., Jiang, P., Wu, H.G., Hu, F.W.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. 79, 2333–2343 (2015)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Bao, H., Wang, N., Bao, B.C., Chen, M., Jin, P.P., Wang, G.Y.: Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria. Commun. Nonlinear Sci. 57, 264–275 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Modern Circuits and Intelligent InformationHangzhou Dianzi UniversityHangzhouChina
  2. 2.College of Mechanic and Electronic EngineeringWuyi UniversityWuyishanChina
  3. 3.School of Electrical, Electronic, and Computer EngineeringThe University of Western AustraliaCrawleyAustralia
  4. 4.College of AutomationGuangdong University of TechnologyGuangzhouChina
  5. 5.College of Electrical Engineering and AutomationShandong University of Science and TechnologyQingdaoChina

Personalised recommendations