Advertisement

A new control method for planar four-link underactuated manipulator based on intelligence optimization

  • Ya-Wu Wang
  • Xu-Zhi LaiEmail author
  • Pan Zhang
  • Chun-Yi Su
  • Min Wu
Original Paper
  • 25 Downloads

Abstract

This paper presents a continuous control strategy based on the differential evolution (DE) algorithm for a planar four-link underactuated manipulator with a passive first joint to realize its position-posture control objective. First, we obtain the coupling equation in integral form between the angle of the passive link and the states (angles and angular velocities) of three active links according to the angular velocity constraint of the system. Then, according to this coupling equation, we construct a Lyapunov function only based on the control targets of three active links, and use the Lyapunov function to design the PD controllers. In addition, these general PD controllers are modified to be the step PD controllers to overcome the sudden change in the initial torques. Next, we use the DE algorithm to optimize the target angles of all links and the design parameters of the step PD controllers, which ensures that the angle of the passive link converges to its target angle when the angles of three active links converge to their target angles. Finally, simulation results demonstrate the effectiveness of the proposed control strategy.

Keywords

Planar four-link underactuated manipulator Position-posture control Nonholonomic system Continuous control strategy Differential evolution algorithm 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61773353, the Hubei Provincial Natural Science Foundation of China under Grant 2015CFA010, and the 111 Project under Grant B17040.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Moreno-Valenzuela, J., Aguilar-Avelar, C.: Motion Control of Underactuated Mechanical Systems. Springer, Berlin (2018)CrossRefzbMATHGoogle Scholar
  2. 2.
    Romeroa, J.G., Donaire, A., Ortega, R., Borja, P.: Global stabilisation of underactuated mechanical systems via pid passivity-based control. Automatica 96, 178–185 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Peng, Z.X., Wen, G.G., Yang, S.C., Rahmani, A.: Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network. Nonlinear Dyn. 86(1), 605–622 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Zhu, W.W., Du, H.B., Cheng, Y.Y., Chu, Z.B.: Hovering control for quadrotor aircraft based on finite-time control algorithm. Nonlinear Dyn. 88(4), 2359–2369 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Miao, J.M., Wang, S.P., Tomovic, M.M., Zhao, Z.P.: Compound line-of-sight nonlinear path following control of underactuated marine vehicles exposed to wind, waves, and ocean currents. Nonlinear Dyn. 89(4), 2441–2459 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, H., Fang, Y.C., Sun, N.: A swing constrained time-optimal trajectory planning strategy for double pendulum crane systems. Nonlinear Dyn. 89(2), 1513–1524 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Aguilar-Ibanez, C., Suarez-Castanon, M.S., Mendoza-Mendoza, J., de Jesus Rubio, J., Martinez-Garcia, J.C.: Output-feedback stabilization of the pvtol aircraft system based on an exact differentiator. J. Intell. Robot. Syst. 90, 443–454 (2018)CrossRefGoogle Scholar
  8. 8.
    Lai, X.Z., Zhang, A.C., She, J.H., Wu, M.: Motion control of underactuated three-link gymnast robot based on combination of energy and posture. IET Control Theory Appl. 5(13), 1484–1493 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lai, X.Z., Pan, C.Z., Wu, M., Yang, S.X.: Unified control of \(n\)-link underactuated manipulator with single passive joint: a reduced order approach. Mech. Mach. Theory 56, 170–185 (2012)CrossRefGoogle Scholar
  10. 10.
    Brown, S.C., Passino, K.M.: Intelligent control for an acrobot. J. Intell. Robot. Syst. 18(3), 209–248 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Zhang, A.C., Lai, X.Z., Wu, M., She, J.H.: Nonlinear stabilizing control for a class of underactuated mechanical systems with multi degree of freedoms. Nonlinear Dyn. 89(3), 2241–2253 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Arai, H., Tanie, K., Shiroma, N.: Nonholonomic control of a three-dof planar underactuated manipulator. IEEE Trans. Robot. Autom. 14(5), 681–695 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Mahindrakar, A.D., Rao, S., Banavar, R.: Point-to-point control of a 2R planar horizontal underactuated manipulator. Mech. Mach. Theory 41(7), 838–844 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Reyhanoglu, M., van der Schaft, A., McClamroch, N.H., Kolmanovsky, I.: Dynamics and control of a class of underactuated mechanical systems. IEEE Trans. Autom. Control 44(9), 1663–1671 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    He, G.P., Wang, Z.L., Zhang, J., Geng, Z.Y.: Characteristics analysis and stabilization of a planar 2R underactuated manipulator. Robotica 34(3), 584–600 (2016)CrossRefGoogle Scholar
  16. 16.
    Luca, A.D., Mattone, R., Oriolo, G.: Stabilization of an underactuated planar 2R manipulator. Int. J. Robust Nonlinear Control 10(4), 181–198 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Oriolo, G., Nakamura, Y.: Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators. In: Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, England pp. 2398–2403 (1991)Google Scholar
  18. 18.
    Lai, X.Z., She, J.H., Cao, W.H., Yang, S.X.: Stabilization of underactuated planar acrobot based on motion-state constraints. Int. J. Non-Linear Mech. 77, 342–347 (2015)CrossRefGoogle Scholar
  19. 19.
    Luca, A.D., Iannitti, S., Mattone, R., Oriolo, G.: Underactuated manipulators: control properties and techniques. Mach. Intell. Robot. Control 4(3), 113–125 (2002)Google Scholar
  20. 20.
    Lai, X.Z., Wang, Y.W., Wu, M., Cao, W.H.: Stable control strategy for planar three-link underactuated mechanical system. IEEE/ASME Trans. Mechatron. 21(3), 1345–1356 (2016)CrossRefGoogle Scholar
  21. 21.
    Lai, X.Z., Wang, Y.W., Cao, J.Q., Wu, M.: A simple and quick control strategy for a class of first-order nonholonomic manipulator. Nonlinear Dyn. 85(4), 2261–2276 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Shi, L., Tian, X.C., Zhang, C.H.: Automatic programming for industrial robot to weld intersecting pipes. Int. J. Adv. Manuf. Technol. 81(9–12), 2099–2107 (2015)CrossRefGoogle Scholar
  23. 23.
    Guo, Y.J., Dong, H.Y., Ke, Y.L.: Stiffness-oriented posture optimization in robotic machining applications. Robot. Comput. Integr. Manuf. 35, 69–76 (2015)CrossRefGoogle Scholar
  24. 24.
    Lai, X.Z., Zhang, P., Wang, Y.W., Wu, M.: Position-posture control of a planar four-link underactuated manipulator based on genetic algorithm. IEEE Trans. Ind. Electron. 64(6), 4781–4791 (2017)CrossRefGoogle Scholar
  25. 25.
    Garga, D.P., Kumarb, M.: Optimization techniques applied to multiple manipulators for path planning and torque minimization. Eng. Appl. Artif. Intell. 15(3–4), 241–252 (2002)CrossRefGoogle Scholar
  26. 26.
    Rosas-Flores, J.A., Alvarez-Gallegos, J., Castro-Linares, R.: Control of an underactuated planar 2R manipulator: experimental results. IFAC Proc. Vol. 35(1), 265–270 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of AutomationChina University of GeosciencesWuhanChina
  2. 2.Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex SystemsWuhanChina
  3. 3.Faculty of Engineering and Computer ScienceConcordia UniversityMontrealCanada

Personalised recommendations