Dynamical transitions of the quasi-periodic plasma model

  • Chanh Kieu
  • Quan WangEmail author
  • Dongming Yan
Original Paper


This study examines the stability and transitions of the quasi-periodic plasma perturbation model from the perspective of the dynamical transition. By analyzing the principle of exchange of stability, it is shown that this model undergoes three different types of dynamical transitions as the model control parameter increases. For the first transition, the model exhibits a continuous transition type and subsequently bifurcates to two stable steady states. As this model parameter further increases, the second and third transition can be either continuous or catastrophic. For the continuous transition, the model bifurcates from the two steady states that are resulted from the first transition to a stable periodic solution. If the second transition is catastrophic, there exists a singular separation of a periodic solution, and a nontrivial attractor emerging suddenly for a subcritical value of the control parameters. Numerical experiments confirm both continuous and catastrophic types of transitions, which depend also on the other model parameters. The continuous transition region and catastrophic transition region are also numerically demonstrated. The method used in this paper can be generalized to study other ODE systems.


Dynamic transition Nonlinear dynamics Continuous and catastrophic transition Bifurcation Plasma dynamics 



This research is supported in part by the National Science Foundation (NSF) Grant DMS-1515024, Indiana University Faculty Research fund, and the Office of Naval Research (ONR)’s Young Investigator Program Award and the National Science Foundation of China (NSFC) (No. 11771306). We thank three anonymous reviewers for their constructive comments and suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chua, L.: Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  3. 3.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(2), 397–398 (1976)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications, Volume 24 of World Scientific Series on Nonlinear Science Series A. World Scientific, Singapore (1998)CrossRefGoogle Scholar
  5. 5.
    Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifur. Chaos Appl. Sci. Eng. 12(3), 659–661 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Liao, X., Li, C., Zhou, S.: Hopf bifurcation and chaos in macroeconomic models with policy lag. Chaos Solitons Fractals 25(1), 91–108 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Algaba, A., Gamero, E., Rodrí guez Luis, A.J.: A bifurcation analysis of a simple electronic circuit. Commun. Nonlinear Sci. Numer. Simul. 10(2), 169–178 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Constantinescu, D., Dumbrajs, O., Igochine, V., Lackner, K., Meyer-Spasche, R., Zohm, H., Team, A.U.: A low-dimensional model system for quasi-periodic plasma. Phys. Plasmas 18(6), 062307 (2011)CrossRefGoogle Scholar
  9. 9.
    Elsadany, A.A., Elsonbaty, A., Agiza, H.N.: Qualitative dynamical analysis of chaotic plasma perturbations model. Commun. Nonlinear Sci. Numer. Simul. 59, 409–423 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, Volume 112 of Applied Mathematical Sciences, 3rd edn. Springer, New York (2004)CrossRefGoogle Scholar
  11. 11.
    Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3, part 1), 617–656 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Smale, S.: The Mathematics of Time: Essays on Dynamical Systems, Economic Processes, and Related Topics. Springer, New York (1980)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ma, T., Wang, S.: Bifurcation Theory and Applications. World Scientific Series on Nonlinear Science, vol. 53. World Scientific Publishing Co., Pte. Ltd., Hackensack (2005)Google Scholar
  15. 15.
    Ma, T., Wang, S.: Phase Transition Dynamics. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ma, T., Wang, S.: Stability and Bifurcation of Nonlinear Evolutions Equations. Science Press, Beijing (2007)Google Scholar
  17. 17.
    Han, D.-Z., Hernandez, M., Wang, Q.: Dynamical transitions of a low-dimensional model for Rayleigh–Bénard convection under a vertical magnetic field. Chaos Solitons Fractals 114, 370–380 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dijkstra, H., Sengul, T., Shen, J., Wang, S.: Dynamic transitions of quasi-geostrophic channel flow. SIAM J. Appl. Math. 75(5), 2361–2378 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ma, T., Wang, A.: Rayleigh-Bénard convection: dynamics and structure in the physical space. Commun. Math. Sci. 5(3), 553–574 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sengul, T., Shen, J., Wang, S.: Pattern formations of 2D Rayleigh–Bénard convection with no-slip boundary conditions for the velocity at the critical length scales. Math. Methods Appl. Sci. 38(17), 3792–3806 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sengul, T., Wang, S.: Pattern formation in Rayleigh–Bénard convection. Commun. Math. Sci. 11(1), 315–343 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Earth and Atmospheric SciencesIndiana UniversityBloomingtonUSA
  2. 2.Department of MathematicsSichuan UniversityChengduPeople’s Republic of China
  3. 3.School of Data SciencesZhejiang University of Finance and EconomicsHangzhouPeople’s Republic of China

Personalised recommendations