Advertisement

Synchronization realization between two nonlinear circuits via an induction coil coupling

  • Zhao Yao
  • Jun MaEmail author
  • Yuangen Yao
  • Chunni Wang
Original Paper
  • 43 Downloads

Abstract

Nonlinear chaotic circuits can be mapped into dimensionless dynamical systems by applying scale transformation. For synchronization control, linear voltage coupling via resistor has confirmed its effectiveness by applying negative feedback on the coupled circuits and nonlinear systems. In fact, resistor-based voltage coupling just bridges the electric devices of nonlinear circuits by imposing appropriate feedback current. Indeed, inductor (or induction coil) can also connect the electric devices and input appropriate stimulus feedback as induced electromotive force, and thus the coupled circuits can be regulated. In this paper, two Chua circuits are coupled by an inductor, which connects one capacitor of the coupled Chua circuits, and magnetic field coupling is activated because time-varying magnetic field and induced electromotive force are generated in the coupling inductor. For numerical approach and dynamical analysis, scale transformation is applied to get dimensionless dynamical systems under magnetic field coupling. Then the controllable parameter mapped from the coupling inductor is adjusted carefully to detect the synchronization approach. The same investigation is also carried out on the circuit platform Multisim. It is found that inductor coupling can benefit the realization of synchronization between two chaotic Chua systems. Complete synchronization can be reached between two identical circuits when the inductor coupling is activated with appropriate intensity. While phase synchronization can be stabilized between two non-identical circuits, chaotic oscillation can be suppressed by periodic Chua circuit under inductor coupling. The potential mechanism for inductor-based synchronization can be explained as magnetic field coupling, which field energy can be propagated via the coupling inductor with time-varying induced electromotive force, and it can give possible insights to know the information encoding between neurons and neural circuits.

Keywords

Field coupling Chua circuit Synchronization Inductor coupling Bifurcation 

Notes

Acknowledgements

This Project is supported by National Natural Science Foundation of China under Grants 11765011 and 11672122. The authors give thanks to Dr. F Q Wu for his helpful discussion and numerical checking.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no any conflict of interest.

References

  1. 1.
    Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., et al.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27, 66–80 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Zhang, G., Ma, J., Alsaedi, A., et al.: Dynamical behavior and application in Josephson junction coupled by memristor. Appl. Math. Comput. 321, 290–299 (2018)MathSciNetGoogle Scholar
  3. 3.
    Kengne, J., Negou, A.N., Tchiotsop, D.: Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn. 88, 2589–2608 (2017)CrossRefGoogle Scholar
  4. 4.
    Sabarathinam, S., Volos, C.K., Thamilmaran, K.: Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator. Nonlinear Dyn. 87, 37–49 (2017)CrossRefGoogle Scholar
  5. 5.
    Singh, J.P., Roy, B.K.: A more chaotic and easily hardware implementable new 3-D chaotic system in comparison with 50 reported systems. Nonlinear Dyn. 93, 1121–1148 (2018)CrossRefzbMATHGoogle Scholar
  6. 6.
    Rajagopal, K., Viet-Thanh, P., Tahir, F.R., et al.: A chaotic jerk system with non-hyperbolic equilibrium: dynamics, effect of time delay and circuit realisation. Pramana J. Phys. 90(4), 52 (2018)CrossRefGoogle Scholar
  7. 7.
    Crotty, P., Schult, D., Segall, K.: Josephson junction simulation of neurons. Phys. Rev. E 82, 011914 (2010)CrossRefGoogle Scholar
  8. 8.
    Muppalla, P.R., Gargiulo, O., Mirzaei, S.I., et al.: Bistability in a mesoscopic Josephson junction array resonator. Phys. Rev. B 97, 024518 (2018)CrossRefGoogle Scholar
  9. 9.
    Dobrowolski, T., Jarmolinski, A.: Is there a relationship between curvature and inductance in the Josephson junction? Results Phys. 8, 48–51 (2018)CrossRefGoogle Scholar
  10. 10.
    Feali, M.S., Ahmadi, A., Hayati, M.: Implementation of adaptive neuron based on memristor and memcapacitor emulators. Neurocomputing 309, 157–167 (2018)CrossRefGoogle Scholar
  11. 11.
    Wu, F.Q., Wang, C.N., Xu, Y., et al.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)CrossRefGoogle Scholar
  12. 12.
    Lv, M., Wang, C.N., Ren, G.D., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)CrossRefGoogle Scholar
  13. 13.
    Itoh, M., Chua, L.O.: Memrisor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Cafagna, D., Grassi, G.: On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70, 1185–1197 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wu, F.Q., Hayat, T., Aan, X.L., et al.: Can Hamilton energy feedback suppress the chameleon chaotic flow? Nonlinear Dyn. 94, 669–677 (2018)CrossRefGoogle Scholar
  16. 16.
    Yao, C.G., Ma, J., Li, C., et al.: The effect of process delay on dynamical behaviors in a self-feedback nonlinear oscillator. Commun. Nonlinear Sci. Numer. Simul. 39, 99–107 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Danca, M.F., Garrappa, R.: Suppressing chaos in discontinuous systems of fractional order by active control. Appl. Math. Comput. 257, 89–102 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Wang, C., Chu, R., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21(1), 370–378 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gamez-Guzman, L., Cruz-Hernandez, C., Lopez-Gutierrez, R.M., et al.: Synchronization of Chua’s circuits with multi-scroll attractors: application to communication. Commun. Nonlinear Sci. Numer. Simul. 14, 2765–2775 (2009)CrossRefGoogle Scholar
  20. 20.
    Koronovskii, A.A., Moskalenko, O.I., Hramov, A.E.: On the use of chaotic synchronization for secure communication. Phys. Uspekhi 52, 1213–1238 (2009)CrossRefGoogle Scholar
  21. 21.
    Ahmad, I., Shafiq, M., Al-Sawalha, M.M.: Globally exponential multi switching-combination synchronization control of chaotic systems for secure communications. Chin. J. Phys. 56(3), 974–987 (2018)CrossRefGoogle Scholar
  22. 22.
    Kaur, M., Kumar, V.: Efficient image encryption method based on improved Lorenz chaotic system. Electron. Lett. 54(9), 562–563 (2018)CrossRefGoogle Scholar
  23. 23.
    Silva-Garcia, V.M., Flores-Carapia, R., Renteria-Marquez, C., et al.: Substitution box generation using Chaos: an image encryption application. Appl. Math. Comput. 332, 123–135 (2018)MathSciNetGoogle Scholar
  24. 24.
    Li, X.W., Li, C.Q., Lee, I.K.: Chaotic image encryption using pseudo-random masks and pixel mapping. Signal Process 125, 48–63 (2015)CrossRefGoogle Scholar
  25. 25.
    Wang, C., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, G., Wu, F.Q., Hayat, T., et al.: Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Commun. Nonlinear Sci. Numer. Simul. 65, 79–90 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Haim, L.B., Rowitch, D.H.: Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 18(1), 31 (2017)CrossRefGoogle Scholar
  28. 28.
    Hu, X.Y., Liu, C.X., Liu, L., et al.: An electronic implementation for Morris–Lecar neuron model. Nonlinear Dyn. 84, 2317–2332 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Heidarpur, M., Ahmadi, A., Kandalaft, N.: A digital implementation of 2D Hindmarsh–Rose neuron. Nonlinear Dyn. 89, 2259–2272 (2017)CrossRefGoogle Scholar
  30. 30.
    Xu, Y., Jia, Y., Ma, J., et al.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)CrossRefGoogle Scholar
  31. 31.
    Lv, M., Ma, J., Yao, Y.G. et al.: Synchronization and wave propagation in neuronal network under field coupling. Sci. China Tech. Sci. 61 (2018).  https://doi.org/10.1007/s11431-018-9268-2
  32. 32.
    Guo, S.L., Xu, Wang, C.N. et al.: Collective response, synapse coupling and field coupling in neuronal network. Chaos & Solitons Fractals. 105, 120–127 (2017)Google Scholar
  33. 33.
    Ma, J., Wu, F.Q., Alsaedi, A., et al.: Crack synchronization of chaotic circuits under field coupling. Nonlinear Dyn. 93, 2057–2069 (2018)CrossRefGoogle Scholar
  34. 34.
    Chua, L., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuts Syst. 33(11), 1072–1118 (1986)CrossRefzbMATHGoogle Scholar
  35. 35.
    Bao, B.C., Li, Q.D., Wang, N., et al.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26, 043111 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Barboza, R., Chua, L.O.: The four-element Chua’s circuit. Int. J. Bifurc. Chaos 18, 943–955 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Wada, M., Nishio, Y., Ushida, A.: Analysis of bifurcation phenomena on two chaotic circuits coupled by an inductor. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 80(5), 869–875 (1997)Google Scholar
  38. 38.
    Nishio, Y., Ushida, A.: On a ring of chaotic circuits coupled by inductors. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 78(5), 608–617 (1995)Google Scholar
  39. 39.
    Nishio, Y., Ushida, A.: Spatio-temporal chaos in simple coupled chaotic circuits. IEEE Trans. Circuits Syst. I 42(10), 678–686 (1995)CrossRefGoogle Scholar
  40. 40.
    Yamauchi, M., Wada, M., Nishio, Y., et al.: Wave propagation phenomena of phase states in oscillators coupled by inductors as a ladder. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 82(11), 2592–2598 (1999)Google Scholar
  41. 41.
    Komatsu, Y., Uwate, Y., Nishio, Y.: Synchronization of chaotic circuits with asymmetric coupling by nonlinear mutual Inductors. In: ICSES 2006 international conference on signals and electronic systems, Łódź, Poland, 17–20 Septermber 2006Google Scholar
  42. 42.
    Ren, G., Xue, Y., Li, Y., et al.: Field coupling benefits signal exchange between Colpitts systems. Appl. Math. Comput. 342, 45–54 (2019)MathSciNetGoogle Scholar
  43. 43.
    Matsumoto, T., Chua, L., Komuro, M.: The double scroll. IEEE Trans. Circuts Syst. 32(8), 797–818 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Pikovsky, A., Roseblum, M., Kurths, J.: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  45. 45.
    Tessone, C.J., Toral, R., Mirasso, C. R. et al.: Synchronization properties of coupled FitzHugh–Nagumo system, Acta Armamentarii. In: Proceedings-International school of physics enrico fermi, vol. 155, pp. 461–468. IOS Press, Ohmsha (1999)Google Scholar
  46. 46.
    Wu, F.Q., Zhou, P., Alsaedi, A., et al.: Synchronization dependence on initial setting of chaotic systems without equilibria. Chaos Solitons & Fractals 110, 124–132 (2018)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wu, F.Q., Ma, J., Ren, G.D.: Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation. J. Zhejiang Univ. Sci. A 19, 889–903 (2018)CrossRefGoogle Scholar
  48. 48.
    Lu, C., Shi, B.: Circuit design of an adjustable neuron activation function and its derivative. Electron. Lett. 36(6), 553–555 (2000)CrossRefGoogle Scholar
  49. 49.
    Yakopcic, C., Hasan, R., Taha, T.M., et al.: Memristor-based neuron circuit and method for applying learning algorithm in SPICE. Electron. Lett. 50(7), 492–494 (2014)CrossRefGoogle Scholar
  50. 50.
    Horio, Y., Taniguchi, T., Aihara, K.: An asynchronous spiking chaotic neuron integrated circuit. Neurocomputing 64, 447–472 (2005)CrossRefGoogle Scholar
  51. 51.
    Mizoguchi, N., Nagamatsu, Y., Aihara, K., et al.: A two-variable silicon neuron circuit based on the Lzhikevich model. Artif. Life Robot. 16(3), 383–388 (2011)CrossRefGoogle Scholar
  52. 52.
    Destexhe, A., Marder, E.: Plasticity in single neuron and circuit computations. Nature 431(7010), 789 (2004)CrossRefGoogle Scholar
  53. 53.
    Xu, Y.M., Yao, Z., Hobiny, A . et al.: Differential coupling contributes to synchronization via a capacitor connection between chaotic circuits. Front. Inf. Technol. Electro. Eng. (2018).  https://doi.org/10.1631/FITEE.1800499

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsLanzhou University of TechnologyLanzhouChina
  2. 2.School of ScienceChongqing University of Posts and TelecommunicationsChongqingChina
  3. 3.Department of Physics, College of ScienceHuazhong Agricultural UniversityWuhanChina

Personalised recommendations